Detecting hate in diversity: a survey of multilingual code-mixed image and video analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Big Data vol. 12, no. 1 (May 2025), p. 109
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203359516
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01167-w  |2 doi 
035 |a 3203359516 
045 2 |b d20250501  |b d20250531 
245 1 |a Detecting hate in diversity: a survey of multilingual code-mixed image and video analysis 
260 |b Springer Nature B.V.  |c May 2025 
513 |a Journal Article 
520 3 |a The proliferation of damaging content on social media in today’s digital environment has increased the need for efficient hate speech identification systems. A thorough examination of hate speech detection methods in a variety of settings, such as code-mixed, multilingual, visual, audio, and textual scenarios, is presented in this paper. Unlike previous research focusing on single modalities, our study thoroughly examines hate speech identification across multiple forms. We classify the numerous types of hate speech, showing how it appears on different platforms and emphasizing the unique difficulties in multi-modal and multilingual settings. We fill research gaps by assessing a variety of methods, including deep learning, machine learning, and natural language processing, especially for complicated data like code-mixed and cross-lingual text. Additionally, we offer key technique comparisons, suggesting future research avenues that prioritize multi-modal analysis and ethical data handling, while acknowledging its benefits and drawbacks. This study attempts to promote scholarly research and real-world applications on social media platforms by acting as an essential resource for improving hate speech identification across various data sources. 
653 |a Multilingualism 
653 |a Modal analysis 
653 |a Hate speech 
653 |a Social networks 
653 |a Deep learning 
653 |a Machine learning 
653 |a Natural language processing 
653 |a Digital media 
653 |a Big Data 
653 |a Social media 
653 |a Data processing 
653 |a Ethics 
653 |a Code switching 
653 |a Multimodality 
653 |a Mass media images 
653 |a Video recordings 
653 |a Research 
653 |a Research applications 
653 |a Speech perception 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (May 2025), p. 109 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203359516/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203359516/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch