Financial fraud detection using a hybrid deep belief network and quantum optimization approach

Guardado en:
Detalles Bibliográficos
Publicado en:SN Applied Sciences vol. 7, no. 5 (May 2025), p. 454
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203375308
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-06999-y  |2 doi 
035 |a 3203375308 
045 2 |b d20250501  |b d20250531 
245 1 |a Financial fraud detection using a hybrid deep belief network and quantum optimization approach 
260 |b Springer Nature B.V.  |c May 2025 
513 |a Journal Article 
520 3 |a In the contemporary global economic landscape, financial fraud represents a significant challenge, resulting in substantial losses for market participants, including business enterprises and financial institutions. This phenomenon has a profound impact on market stability, significantly affecting the management of the economy. To address this issue, this paper proposes a novel financial fraud detection algorithm that integrates deep belief networks (DBN) with quantum optimisation algorithms. The proposed model employs a hybrid model optimisation strategy that integrates convolutional neural networks (CNNs), long short-term memory networks (LSTMs) and graph neural networks (GNNs).Conventional detection methods depend on manual rules and statistical analyses, which are inadequate for handling large-scale, high-density and complex financial market data. Recent advancements in deep learning have demonstrated potential in addressing these challenges; however, they are often hindered by issues related to computational efficiency and training time. The proposed integrated approach in this paper combines deep learning with quantum computing to overcome these limitations. The hybrid model utilises the parallel processing power of quantum computing to improve the training efficiency of DBNs, while CNNs, LSTMs and GNNs extract features from multiple dimensions of financial market data. Experimental results demonstrate the proposed model's advantages in terms of accuracy, training speed and robustness, providing a promising solution for financial fraud detection.Article highlights<list list-type="bullet"><list-item></list-item>Quantum-Enhanced Fraud Detection: A novel quantum-optimized deep belief network achieves 88.7% precision and 86.5% recall, outperforming traditional methods in fraud detection efficiency and accuracy.<list-item>Hybrid Model for Robust Fraud Detection: Integration of CNN, LSTM, and GNN extracts spatial, temporal, and relational features to enhance detection robustness for complex fraud patterns.</list-item><list-item>Economic Benefits and Cost-Effective Deployment: The model reduces fraud-related economic losses and deployment costs, offering a cost-effective solution with high computational efficiency for financial institutions.</list-item> 
653 |a Feature extraction 
653 |a Parallel processing 
653 |a Accuracy 
653 |a Quantum computing 
653 |a Datasets 
653 |a Deep learning 
653 |a Algorithms 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Fraud prevention 
653 |a Belief networks 
653 |a Computer applications 
653 |a Training 
653 |a Long short-term memory 
653 |a Statistical analysis 
653 |a Machine learning 
653 |a Economic impact 
653 |a Efficiency 
653 |a Economics 
653 |a Graph neural networks 
653 |a Fraud 
653 |a Neural networks 
653 |a Optimization 
653 |a Computational efficiency 
653 |a Global economy 
653 |a Robustness (mathematics) 
653 |a Cluster analysis 
653 |a Statistical methods 
653 |a Economic 
773 0 |t SN Applied Sciences  |g vol. 7, no. 5 (May 2025), p. 454 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203375308/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3203375308/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203375308/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch