Chelated tin halide perovskite for near-infrared neuromorphic imaging array enabling object recognition and motion perception

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 4261
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203613291
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-59624-2  |2 doi 
035 |a 3203613291 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
245 1 |a Chelated tin halide perovskite for near-infrared neuromorphic imaging array enabling object recognition and motion perception 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Neuromorphic imaging arrays integrate sensing, memory, and processing for efficient spatiotemporal fusion, enabling intelligent object and motion recognition in autonomous and surveillance systems. Halide perovskites offer potential for neuromorphic imaging by regulating photogenerated ions and charges, but lead toxicity and limited response range remain key limitations. Here, we present lead-free non-toxic formamidinium tin triiodide perovskites functionalized with bio-friendly quercetin molecules via a multi-site chelate strategy, achieving favorable near-infrared response and optoelectronic properties. Leveraging a non-equilibrium photogenerated carrier strategy, the formamidinium tin triiodide-quercetin based near-infrared optoelectronic synapses exhibit key synaptic features for practical applications, including quasi-linear time-dependent photocurrent generation, prolonged photocurrent decay, high stability, and low energy consumption. Ultimately, a 12 × 12 real-time neuromorphic near-infrared imaging array is constructed on thin-film transistor backplanes, enabling hardware-level spatiotemporal fusion for robust object recognition and motion perception in complex environments for autonomous and surveillance systems.Liu et al. report the multi-site chelate effect using quercetin for Sn2+ and retarding crystallisation in FASnI3-based optoelectronic synapse. 12 × 12 real-time NIR imaging array enables spatiotemporal information fusion for object recognition, enhancement, and motion perception in complex conditions. 
653 |a Lead free 
653 |a Time dependence 
653 |a Backplanes 
653 |a Crystallization 
653 |a Optoelectronics 
653 |a Pattern recognition 
653 |a Photoelectric effect 
653 |a Toxicity 
653 |a Photoelectric emission 
653 |a Data integration 
653 |a Semiconductor devices 
653 |a Thin films 
653 |a Infrared imaging 
653 |a Energy consumption 
653 |a Tin 
653 |a Perovskites 
653 |a Motion perception 
653 |a Thin film transistors 
653 |a Chelates 
653 |a Arrays 
653 |a Motion detection 
653 |a Perception 
653 |a Surveillance 
653 |a Object recognition 
653 |a Quercetin 
653 |a Real time 
653 |a Synapses 
653 |a I.R. radiation 
653 |a Surveillance systems 
653 |a Environmental 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 4261 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203613291/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203613291/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch