Dynamic simulation of knee joint mechanics: individualized multi-moment finite element modelling of patellar tendon stress during landing

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Biomechanics vol. 186 (Jun 2025)
Autor principal: Li, Fengping
Otros Autores: Sun, Dong, Yang, Song, Zhou, Zhanyi, Wang, Dongxu, Cen, Xuanzhen, Zhang, Qiaolin, Gao, Zixiang, Gu, Yaodong
Publicado:
Elsevier Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203839178
003 UK-CbPIL
022 |a 0021-9290 
022 |a 1873-2380 
024 7 |a 10.1016/j.jbiomech.2025.112730  |2 doi 
035 |a 3203839178 
045 2 |b d20250701  |b d20250721 
084 |a 170337  |2 nlm 
100 1 |a Li, Fengping 
245 1 |a Dynamic simulation of knee joint mechanics: individualized multi-moment finite element modelling of patellar tendon stress during landing 
260 |b Elsevier Limited  |c Jun 2025 
513 |a Journal Article 
520 3 |a Patellar tendinopathy is prevalent in sports requiring high jumping demands, and understanding the in vivo biomechanical behavior of the patellar tendon (PT) during landing is crucial for developing effective injury prevention and rehabilitation strategies. This study investigates the in vivo biomechanical behavior of the PT during the landing phase of a stop-jump task, integrating musculoskeletal modelling, finite element analysis (FEA), and a high-speed dual fluoroscopic imaging system (DFIS). A subject-specific knee joint model was constructed from CT, MRI, and dynamic X-ray data for a 27-year-old male (178&#xa0;cm, 68&#xa0;kg) at six time points during landing. Musculoskeletal simulations were used to estimated knee joint moments and quadriceps muscle forces, which were then applied to the finite element models. DFIS ensured accurate 3D spatial alignment of the models. Ridge regression analysis explored the relationship between applied biomechanical loads and the maximum equivalent (von Mises) stress in the PT. Maximum PT stress was observed at the bone attachment sites, with the highest stress (94.44&#xa0;MPa) at initial ground contact, decreasing to a minimum of 16.37&#xa0;MPa during landing. Regression analysis demonstrated a significant correlation (R <ce:sup>2</ce:sup>&#xa0;=&#xa0;0.859, P&#xa0;<&#xa0;0.001) between knee flexion moments, quadriceps muscle forces, and maximum PT stress, identifying these factors as key determinants of PT loading. This study underscores the importance of knee flexion moments and quadriceps muscle forces in influencing PT stress during landing. Future studies should include larger cohort to validate these results and explore the potential of machine learning for real-time injury risk prediction. 
653 |a Landing 
653 |a Finite element method 
653 |a Motion capture 
653 |a Knee 
653 |a Biomechanical engineering 
653 |a Injury prevention 
653 |a Muscles 
653 |a Fluoroscopic imaging 
653 |a Modelling 
653 |a Contact stresses 
653 |a Regression analysis 
653 |a Tendons 
653 |a Rehabilitation 
653 |a Joints (anatomy) 
653 |a Electromyography 
653 |a Machine learning 
653 |a In vivo methods and tests 
653 |a Ligaments 
653 |a Quadriceps muscle 
653 |a Biomechanics 
653 |a Computed tomography 
653 |a Cartilage 
653 |a Jumping 
653 |a Warm up (exercise) 
653 |a Finite element analysis 
653 |a Real time 
653 |a Mathematical models 
700 1 |a Sun, Dong 
700 1 |a Yang, Song 
700 1 |a Zhou, Zhanyi 
700 1 |a Wang, Dongxu 
700 1 |a Cen, Xuanzhen 
700 1 |a Zhang, Qiaolin 
700 1 |a Gao, Zixiang 
700 1 |a Gu, Yaodong 
773 0 |t Journal of Biomechanics  |g vol. 186 (Jun 2025) 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203839178/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3203839178/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203839178/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch