Performance analysis of a filtering variational quantum algorithm

Guardado en:
Bibliografiske detaljer
Udgivet i:New Journal of Physics vol. 27, no. 5 (May 2025), p. 054505
Hovedforfatter: Marin-Sanchez, Gabriel
Andre forfattere: Amaro, David
Udgivet:
IOP Publishing
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3203894691
003 UK-CbPIL
022 |a 1367-2630 
024 7 |a 10.1088/1367-2630/add365  |2 doi 
035 |a 3203894691 
045 2 |b d20250501  |b d20250531 
100 1 |a Marin-Sanchez, Gabriel  |u Quantinuum, Partnership House , Carlisle Place, London SW1P 1BX, United Kingdom 
245 1 |a Performance analysis of a filtering variational quantum algorithm 
260 |b IOP Publishing  |c May 2025 
513 |a Journal Article 
520 3 |a Even a minor boost in solving combinatorial optimization problems can greatly benefit multiple industries. Quantum computers, with their unique information processing capabilities, hold promise for delivering such enhancements. The filtering variational quantum eigensolver (F-VQE) is a variational hybrid quantum algorithm designed to solve combinatorial optimization problems on existing quantum computers with limited qubit number, connectivity, and fidelity. In this work we employ instantaneous quantum polynomial circuits as our parameterized quantum circuits. We propose a hardware-efficient implementation that respects limited qubit connectivity and show that they halve the number of circuits necessary to evaluate the gradient with the parameter-shift rule. To assess the potential of this protocol in the context of combinatorial optimization, we conduct extensive numerical analysis. We compare the performance against three classical baseline algorithms on weighted MaxCut and the asymmetric traveling salesperson problem (ATSP). We employ noiseless simulators for problems encoded on 13–29 qubits, and up to 37 qubits on the IBMQ real quantum devices. The ATSP encoding employed reduces the number of qubits and avoids the need of constraints compared to the standard quadratic unconstrained binary optimization/Ising model. Despite some observed positive signs, we conclude that significant development is necessary for a practical advantage with F-VQE. 
653 |a Quantum computing 
653 |a Simulators 
653 |a Data processing 
653 |a Quantum computers 
653 |a Combinatorial analysis 
653 |a Numerical analysis 
653 |a Optimization 
653 |a Traveling salesman problem 
653 |a Polynomials 
653 |a Algorithms 
653 |a Ising model 
653 |a Circuits 
653 |a Filtration 
653 |a Qubits (quantum computing) 
700 1 |a Amaro, David 
773 0 |t New Journal of Physics  |g vol. 27, no. 5 (May 2025), p. 054505 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203894691/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203894691/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch