PAD-SA: a method for predicting the turnover of scientific researchers based on ADASYN-Stacking algorithm

Salvato in:
Dettagli Bibliografici
Pubblicato in:SN Applied Sciences vol. 7, no. 5 (May 2025), p. 481
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3203967204
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-06970-x  |2 doi 
035 |a 3203967204 
045 2 |b d20250501  |b d20250531 
245 1 |a PAD-SA: a method for predicting the turnover of scientific researchers based on ADASYN-Stacking algorithm 
260 |b Springer Nature B.V.  |c May 2025 
513 |a Journal Article 
520 3 |a Scientific researchers constitute the core strength of innovation within an organization, and their turnover can significantly affect the enterprise. This includes the risk of trade secret disclosure, setbacks in research and development, and stalled business progress. To address these issues, this paper proposes a novel prediction method named PAD-SA (Prediction of Academic Departure using ADASYN-Stacking Algorithm) by employing the ADASYN (Adaptive Synthetic) sampling algorithm in conjunction with the Stacking algorithm. PAD-SA can predict the probability of scientific researchers’ departure, thereby helping enterprises anticipate the turnover intentions of their research staff members. The dataset for this study comprises feature information collected from 1100 scientific researchers. The paper addresses the dataset imbalance issue by employing the adaptive oversampling algorithm of ADASYN, which effectively mitigates model prediction bias due to uneven sample distribution. In performance comparisons, PAD-SA outperformed the best model in the benchmark group, with its ROC value exceeding the average performance of the comparative models by 3.7%, 11.9%, and 9.3% respectively.Article Highlights<list list-type="bullet"><list-item></list-item>Through visualization techniques, the relationship between dataset features and employee turnover rates is revealed, laying the foundation for data preprocessing and model construction.<list-item>The ADASYN sampling technique is employed to address the imbalance in the original dataset, effectively reducing the prediction bias of the model.</list-item><list-item>By integrating the Stacking algorithm, an efficient prediction model for the turnover of researchers is successfully constructed, yielding significant results.</list-item> 
653 |a Accuracy 
653 |a Bias 
653 |a Datasets 
653 |a Sampling techniques 
653 |a Algorithms 
653 |a Adaptive sampling 
653 |a Human resource management 
653 |a Fraud prevention 
653 |a Researchers 
653 |a Research & development--R&D 
653 |a Sampling 
653 |a Prediction models 
653 |a Efficiency 
653 |a Adaptive algorithms 
653 |a Machine learning 
653 |a Performance assessment 
653 |a Sampling methods 
653 |a Support vector machines 
653 |a Classification 
653 |a Employee turnover 
653 |a Turnover rate 
653 |a Economic 
773 0 |t SN Applied Sciences  |g vol. 7, no. 5 (May 2025), p. 481 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203967204/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3203967204/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3203967204/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch