Machine Learning for Fault Detection and Localization in Underground Power Cables: Improving Reliability in Power Systems

Guardado en:
Detalles Bibliográficos
Publicado en:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025), p. 1516-1521
Autor principal: Anitha, B
Otros Autores: Mathavan, S, Santhosh, S, Sowmiya, R
Publicado:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3203972481
003 UK-CbPIL
024 7 |a 10.1109/ICTMIM65579.2025.10988332  |2 doi 
035 |a 3203972481 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Anitha, B  |u Anna University,KIT-Kalaignarkarunanidhi Institute of Technology,Department of Electronics and Communication Engineering,Coimbatore,India 
245 1 |a Machine Learning for Fault Detection and Localization in Underground Power Cables: Improving Reliability in Power Systems 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 5th International Conference on Trends in Material Science and Inventive Materials (ICTMIM)Conference Start Date: 2025 April 7Conference End Date: 2025 April 9Conference Location: Kanyakumari, IndiaUnderground power cables are essential for most power systems today but can experience insulation damage, short-circuit, and mechanical damage. Correct fault detection and accurate fault location is critical in order to reduce outage time and maintenance expenses. This paper proposes a new method for fault diagnosis of the underground power cables using IoT sensors, cloud computing, and ML techniques. The sensors send the voltage, current sensors and soil chemical variaations alongside temperature readings to the ThinkSpeak where they undergo preliminary processing. Three different Random Forest, DenseNet, and the customized pretrained transfer learning model are trained individually to predict and localize the faults using the preprocessed data. Random Forest globally predicts with ensemble decision trees, and DenseNet accurately identifies relationships between parameters if they are nonlinear. A number of Transfer Learning mechanisms are pertinent in analysing time series data and improving the fault prediction results. Different to hybrid systems, this study benchmarks each model and provides a comparison on their effectiveness. The presented results show the efficiency of the introduced framework for high accurate faults detection Random Forest 97%, DenseNet 93%, and transfer learning 99%. That is why based on IoT, cloud computing, and sophisticated ML approaches, this study offers a solution for real-time fault detection of the underground power cables, which can help to develop an intelligent power system. 
653 |a Parameter identification 
653 |a Benchmarks 
653 |a Insulation 
653 |a Cables 
653 |a Fault diagnosis 
653 |a System reliability 
653 |a Chemical sensors 
653 |a Fault location 
653 |a Cloud computing 
653 |a Sensors 
653 |a Underground cables 
653 |a Soil chemistry 
653 |a Damage detection 
653 |a Power cables 
653 |a Hybrid systems 
653 |a Short circuits 
653 |a Machine learning 
653 |a Real time 
653 |a Fault detection 
653 |a Decision trees 
653 |a Economic 
700 1 |a Mathavan, S  |u Anna University,KIT-Kalaignarkarunanidhi Institute of Technology,Department of Electronics and Communication Engineering,Coimbatore,India 
700 1 |a Santhosh, S  |u Anna University,KIT-Kalaignarkarunanidhi Institute of Technology,Department of Electronics and Communication Engineering,Coimbatore,India 
700 1 |a Sowmiya, R  |u Anna University,KIT-Kalaignarkarunanidhi Institute of Technology,Department of Electronics and Communication Engineering,Coimbatore,India 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025), p. 1516-1521 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3203972481/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch