Combining spatial transcriptomics with tissue morphology

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 4452
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3204058890
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-58989-8  |2 doi 
035 |a 3204058890 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
245 1 |a Combining spatial transcriptomics with tissue morphology 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Spatial transcriptomics has transformed our understanding of tissue architecture by preserving the spatial context of gene expression patterns. Simultaneously, advances in imaging AI have enabled extraction of morphological features describing the tissue. This review introduces a framework for categorizing methods that combine spatial transcriptomics with tissue morphology, focusing on either translating or integrating morphological features into spatial transcriptomics. Translation involves using morphology to predict gene expression, creating super-resolution maps or inferring genetic information from H&E-stained samples. Integration enriches spatial transcriptomics by identifying morphological features that complement gene expression. We also explore learning strategies and future directions for this emerging field.Spatial transcriptomics (ST) has transformed our knowledge of tissue biology through the examination of gene expression in cells within their tissue context. This review aims to categorise methods that combine ST with tissue morphology, focusing on either translating or integrating morphological features into ST analyses. 
653 |a Gene expression 
653 |a Transcriptomics 
653 |a Morphology 
653 |a Tissues 
653 |a Context 
653 |a Gene mapping 
653 |a Deep learning 
653 |a Artificial intelligence 
653 |a Information sharing 
653 |a Algorithms 
653 |a Information communication 
653 |a Environmental 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 4452 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3204058890/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3204058890/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch