A large-scale multiview point cloud registration method based on distance statistical distribution of weak features

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Journal of Computational Design and Engineering vol. 12, no. 1 (Jan 2025), p. 312
Үндсэн зохиолч: Feng, Yun
Бусад зохиолчид: Tao, Guoren, Wu, Wenlei, Lin, Jiahao, Liu, Xiaojun, Chen, Liangzhou
Хэвлэсэн:
Oxford University Press
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3204104755
003 UK-CbPIL
022 |a 2288-5048 
024 7 |a 10.1093/jcde/qwaf001  |2 doi 
035 |a 3204104755 
045 2 |b d20250101  |b d20250131 
100 1 |a Feng, Yun  |u School of Mechanical Science and Engineering, HuaZhong University of Science and Technology , Wuhan 430000 , Hubei, China 
245 1 |a A large-scale multiview point cloud registration method based on distance statistical distribution of weak features 
260 |b Oxford University Press  |c Jan 2025 
513 |a Journal Article 
520 3 |a There are issues such as poor layered smoothness, model distortion, and error accumulation in the process of large-scale weak feature point cloud stitching and registration. This paper proposes a precise point cloud registration method based on distance statistical distribution. By summarizing and statistically analyzing the distance thresholds during the iterative process, it accurately determines the closest points for point cloud registration, thus avoiding the problem of low registration accuracy caused by manually setting distance thresholds. By statistically analyzing the distance intervals of corresponding points in the point cloud to eliminate erroneous correspondences and utilizing pose graph optimization for global pose, this method ensures the smoothness and accuracy of point cloud registration. Experiments have validated the effectiveness of this method. Comparative experiments have demonstrated that this method surpasses traditional point cloud registration methods in terms of accuracy, convergence, and robustness. 
653 |a Stitching 
653 |a Thresholds 
653 |a Smoothness 
653 |a Image registration 
653 |a Engineering 
653 |a Methods 
653 |a Registration 
653 |a Algorithms 
653 |a Probability distribution 
653 |a Optimization 
653 |a Efficiency 
700 1 |a Tao, Guoren  |u Guilin Measuring & Cutting Tool Co., Ltd , Guilin 541000 , Guangxi, China 
700 1 |a Wu, Wenlei  |u Guilin Measuring & Cutting Tool Co., Ltd , Guilin 541000 , Guangxi, China 
700 1 |a Lin, Jiahao  |u Guilin Measuring & Cutting Tool Co., Ltd , Guilin 541000 , Guangxi, China 
700 1 |a Liu, Xiaojun  |u School of Mechanical Science and Engineering, HuaZhong University of Science and Technology , Wuhan 430000 , Hubei, China 
700 1 |a Chen, Liangzhou  |u School of Mechanical Science and Engineering, HuaZhong University of Science and Technology , Wuhan 430000 , Hubei, China 
773 0 |t Journal of Computational Design and Engineering  |g vol. 12, no. 1 (Jan 2025), p. 312 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3204104755/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3204104755/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch