Can gridded real‐time weather data match direct ground observations for irrigation decision‐support?

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Agrosystems, Geosciences & Environment vol. 8, no. 2 (Jun 1, 2025)
Yazar: Subedi, Samikshya
Diğer Yazarlar: Kechchour, Ayoub, Kantar, Michael, Sharma, Vasudha, Runck, Bryan C.
Baskı/Yayın Bilgisi:
John Wiley & Sons, Inc.
Konular:
Online Erişim:Citation/Abstract
Full Text
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3205529145
003 UK-CbPIL
022 |a 2639-6696 
024 7 |a 10.1002/agg2.70100  |2 doi 
035 |a 3205529145 
045 0 |b d20250601 
100 1 |a Subedi, Samikshya  |u GEMS Informatics Center, University of Minnesota–Twin Cities, Saint Paul, Minnesota, USA 
245 1 |a Can gridded real‐time weather data match direct ground observations for irrigation decision‐support? 
260 |b John Wiley & Sons, Inc.  |c Jun 1, 2025 
513 |a Journal Article 
520 3 |a Agricultural decision‐support systems are commonplace in extension and outreach. These systems typically rely on either historical or direct ground observations to make grower recommendations. Sensor data create many challenges for application developers, though, including managing device‐level characteristics, ensuring observation data quality, and handling missing data. In many data flows for decision support, encapsulation is a best practice development approach where data collection and storage are isolated from application development by application programming interfaces (APIs). Here, we consider the data quality of gridded and non‐gridded weather data types in agricultural modeling for predicting evapotranspiration (ET) and growing degree days (GDD). We compare API‐accessible gridded datasets from GEMS Exchange to MESONET (mesoscale network of weather and climatological stations) data from the Minnesota Department of Agriculture (MDA). We evaluate the data sources directly for goodness‐of‐fit for solar radiation, temperature (min and max), dew point, and wind speed, as well as downstream predictions of reference ET (ETref) and GDD. Our findings show that gridded data, despite its tendency to overestimate solar radiation, does not significantly impact the accuracy of ET (R2 = 0.92 for 2022 and 0.93 for 2023; root mean square error [RMSE] = 0.55 mm for 2023) or GDD predictions (R2 = 0.99 for 2022 and 0.98 for 2023; RMSE = 0.53°C [2022], RMSE = 0.70°C [2023]). This suggests that application programming interface (API)‐based gridded data, accessible for all locations, can be reliably used for ETref and GDD modeling for decision support and complements MESONET measures by providing developers with standard software interfaces for real‐time weather information. 
610 4 |a United Nations--UN 
651 4 |a Minnesota 
651 4 |a United States--US 
653 |a Accessibility 
653 |a Accuracy 
653 |a Datasets 
653 |a Evapotranspiration 
653 |a Modelling 
653 |a Wind speed 
653 |a Weather 
653 |a Corn 
653 |a Dew point 
653 |a Application programming interface 
653 |a Crops 
653 |a Irrigation 
653 |a Radiation 
653 |a Interfaces 
653 |a Data collection 
653 |a Scheduling 
653 |a Farmers 
653 |a Decision support systems 
653 |a Solar radiation 
653 |a Remote sensing 
653 |a Missing data 
653 |a Agricultural research 
653 |a Root-mean-square errors 
653 |a Decision making 
653 |a Farms 
653 |a Best practice 
653 |a Meteorological data 
653 |a Climate change 
653 |a Environmental 
700 1 |a Kechchour, Ayoub  |u Department of Soil, Water and Climate, University of Minnesota–Twin Cities, Saint Paul, Minnesota, USA 
700 1 |a Kantar, Michael  |u Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, Hawaiʻi, USA 
700 1 |a Sharma, Vasudha  |u Department of Soil, Water and Climate, University of Minnesota–Twin Cities, Saint Paul, Minnesota, USA 
700 1 |a Runck, Bryan C.  |u GEMS Informatics Center, University of Minnesota–Twin Cities, Saint Paul, Minnesota, USA 
773 0 |t Agrosystems, Geosciences & Environment  |g vol. 8, no. 2 (Jun 1, 2025) 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3205529145/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3205529145/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3205529145/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch