Automatic damage detection and localization of ancient city walls—a case study of the Great Wall

Guardado en:
Detalles Bibliográficos
Publicado en:Heritage Science vol. 13, no. 1 (Dec 2025), p. 174
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3205537245
003 UK-CbPIL
022 |a 2050-7445 
024 7 |a 10.1038/s40494-025-01749-0  |2 doi 
035 |a 3205537245 
045 2 |b d20251201  |b d20251231 
084 |a 243040  |2 nlm 
245 1 |a Automatic damage detection and localization of ancient city walls—a case study of the Great Wall 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Case Study Journal Article 
520 3 |a Prolonged exposure to natural factors and human activities has caused severe brick missing damages in many Great Wall defensive forts, weakening their load-bearing structures. Given the Great Wall’s vast scale, remote locations, and complex terrain, there is an urgent need for a method to quickly identify and locate such damages to support daily monitoring and maintenance. This study proposes a computer vision-based two-phase automatic damage detection and localization method for ancient city walls. In phase one, an Improved-YOLOv5n object detection network, trained on 1197 UAV images, integrates attention mechanisms and knowledge distillation to enhance small target detection, achieving a mean average precision of 74.5%. In phase two, a genetic algorithm-optimized multi-threshold OTSU segmentation and image processing are used to localize damages and extract edge locations, aiding subsequent modeling. The findings of this study can provide a time-efficient, high-accuracy and non-destructive solution for routine structural safety assessments of ancient city walls. 
651 4 |a China 
651 4 |a Great Wall-China 
653 |a Localization method 
653 |a Damage detection 
653 |a Computer vision 
653 |a Load bearing elements 
653 |a Structural safety 
653 |a Genetic algorithms 
653 |a Damage localization 
653 |a Object recognition 
653 |a Image segmentation 
653 |a Image processing 
653 |a Walls 
653 |a Target detection 
653 |a Accuracy 
653 |a Masonry 
653 |a Unmanned aerial vehicles 
653 |a Architecture 
653 |a Methods 
653 |a Algorithms 
653 |a Automation 
653 |a Cracks 
653 |a Localization 
653 |a Case studies 
773 0 |t Heritage Science  |g vol. 13, no. 1 (Dec 2025), p. 174 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3205537245/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3205537245/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch