Real estate valuation with multi-source image fusion and enhanced machine learning pipeline

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS One vol. 20, no. 5 (May 2025), p. e0321951
Hlavní autor: Deng, Lin
Vydáno:
Public Library of Science
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3205744558
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0321951  |2 doi 
035 |a 3205744558 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Deng, Lin 
245 1 |a Real estate valuation with multi-source image fusion and enhanced machine learning pipeline 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a The automated valuation model (AVM) has been widely used by real estate stakeholders to provide accurate property value estimations automatically. Traditional valuation models are subjective and inaccurate, and previous studies have shown that machine learning (ML) approaches perform better in real estate valuation. These valuation models are based on structured tabular data, and few consider integrating multi-source unstructured data such as images. Most previous studies use fixed feature space for model training without considering the model performance variation brought by various feature configuration parameters. To fill these gaps, this study uses Hong Kong as a case study and proposes an enhanced ML-based real estate valuation framework with feature configuration and multi-source image data fusion, including exterior housing photos, street view and remote sensing images. ‌‌Eight ML regressors, namely, Random Forest, Extra Tree, XGBoost, Light Gradient Boosting Machine (LightGBM), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Multiple Linear Regression (MLR) are used to formulate ML pipelines for training. The SHapley Additive exPlanations (SHAP) method is used to examine the effects of images on housing prices. The experimental results show that the model performances using different feature configuration parameters are significantly different, indicating the necessity of feature configuration to obtain more accurate and reliable predictions. Extra Tree performs significantly better than other models. Half of the top 10 significant features are image features, and incorporating multi-source image features can improve property valuation accuracy. Nonlinear associations exist between image features and housing prices, and the spatial distribution patterns of image feature values and corresponding SHAP main effects vary significantly from the city centre to the suburbs. These findings contribute to a better understanding of AVM development with image fusion and the nonlinear associations between image features and housing prices for public authorities, urban planners, and real estate developers. 
653 |a Imagery 
653 |a City centres 
653 |a Photographs 
653 |a Datasets 
653 |a Housing 
653 |a Multilayer perceptrons 
653 |a Suburbs 
653 |a Housing authorities 
653 |a Machine learning 
653 |a Data integration 
653 |a Computer vision 
653 |a Property values 
653 |a Configurations 
653 |a Prices 
653 |a Remote sensing 
653 |a Real estate 
653 |a Spatial distribution 
653 |a Data 
653 |a Housing prices 
653 |a Case studies 
653 |a Images 
653 |a Semantics 
653 |a Accuracy 
653 |a Training 
653 |a Deep learning 
653 |a Urban planning 
653 |a Models 
653 |a Subjectivity 
653 |a Learning algorithms 
653 |a Valuation 
653 |a Computers 
653 |a Perceptions 
653 |a Support vector machines 
653 |a Neural networks 
653 |a Unstructured data 
653 |a Spatial analysis 
653 |a Parameters 
653 |a Distribution patterns 
653 |a Housing costs 
653 |a Property 
653 |a Residential patterns 
653 |a Pipelines 
653 |a Economic 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0321951 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3205744558/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3205744558/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3205744558/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch