Generalizing Low-Resource Morphology: Cognitive and Neural Perspectives on Inflection

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Wiemerslage, Adam J.
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3205813730
003 UK-CbPIL
020 |a 9798315702948 
035 |a 3205813730 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Wiemerslage, Adam J. 
245 1 |a Generalizing Low-Resource Morphology: Cognitive and Neural Perspectives on Inflection 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a State of the art NLP methods to leverage enormous amounts of digital text are transforming the experience of working with computers and accessing the internet for many people. However, for most of the world’s languages, there is insufficient digital data to make recently popular technology like large language models (LLMs) possible. New technology like LLMs are typically not well-suited for underrepresented languages—often referred to as low-resource languages in NLP—without sufficient digital data. In this case, simpler language technologies like dictionaries, morphological analyzers, and text normalizers are useful. This is especially apparent for language documentary life-cycles, building educational tools, and the development of language typology databases. With this in mind, we propose techniques for automatically expanding coverage of morphological databases and develop methods for building morphological tools for the large set of languages with few available resources. We then study the generation capabilities of neural network models that learn from these resources. Finally we propose methods for training neural networks when only small amounts of data are available, taking inspiration from the recent successes of self-supervised pretraining in high-resource NLP. 
653 |a Computer science 
653 |a Linguistics 
653 |a Morphology 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3205813730/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3205813730/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch