Advances in Germanium Detector Signal Modeling With GPU Computing and Deep Learning Techniques

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:ProQuest Dissertations and Theses (2025)
Váldodahkki: Bhimani, Kevin Hargovindbhai
Almmustuhtton:
ProQuest Dissertations & Theses
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3205843756
003 UK-CbPIL
020 |a 9798315704386 
035 |a 3205843756 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Bhimani, Kevin Hargovindbhai 
245 1 |a Advances in Germanium Detector Signal Modeling With GPU Computing and Deep Learning Techniques 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay (LEGEND) collaboration is searching for neutrinoless double-beta (0νββ) decay in 76Ge using modular strings of enriched germanium detectors. Pulse shape simulations (PSS) are essential for modeling the analysis techniques used to distinguish signal events from multi-site and surface event backgrounds, and for generating reliable simulations of energy spectra. Together, these capabilities are critical for identifying the sources of background in current experiments and projecting background levels in future searches. Two longstanding obstacles have hindered reliable PSS: incomplete models of charge collection from surface event interactions and the complexity of replicating the detector’s electronic response. This dissertation addresses both issues using advanced computational techniques.EH-Drift is a novel simulation of charge carriers in germanium that incorporates surface drift, diffusion, and self-repulsion to model surface events. EH-Drift accurately simulates the passivated surface events while reproducing the experimental results from Germanium detector test stands. Using parallel computing on GPUs EH-Drift achieves 62.5x run-time improvement over CPU implementations, making their use for L-200 background modeling computationally feasible. Cyclic Positional U-Net (CPU-Net) is a neural network architecture that performs translations of simulated pulses so that they closely resemble measured detector signals. Using a CycleGAN framework, this Ad-hoc Translation Network learns a data-driven mapping between simulated and measured pulses with high fidelity and computational efficiency. Using data from an HPGe detector, we show that CPU-Net effectively captures and reproduces critical pulse shape features, allowing more realistic simulations without detector-specific tuning.  
653 |a Nuclear physics 
653 |a Physics 
653 |a Mathematics 
653 |a Computational physics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3205843756/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3205843756/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch