SwinFishNet: A Swin Transformer-based approach for automatic fish species classification using transfer learning

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 5 (May 2025), p. e0322711
Autor principal: Ergün, Ebru
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3206153670
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0322711  |2 doi 
035 |a 3206153670 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Ergün, Ebru 
245 1 |a SwinFishNet: A Swin Transformer-based approach for automatic fish species classification using transfer learning 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a The fish market is a crucial industry for both domestic economies and the global seafood trade. Accurate fish species classification (FSC) plays a significant role in ensuring sustainability, improving food safety, and optimizing market efficiency. This study introduces automatic FSC using Swin Transformer (ST) through transfer learning (SwinFishNet), which proposes an innovative approach to FSC by leveraging the ST model, a cutting-edge architecture known for its exceptional performance in computer vision tasks. The ST’s unique ability to capture both local and global features through its hierarchical structure enhances its effectiveness in complex image classification tasks. The model utilizes three distinct datasets: the 12-class BD-Freshwater-Fish dataset, the 10-class SmallFishBD dataset, and the 20-class FishSpecies dataset, focusing on image processing-based classification. Images were preprocessed by resizing to 224 224 pixels, normalizing, and converting to tensor format for compatibility with deep learning models. Transfer learning was applied using the ST, which was fine-tuned on these datasets and optimized with the AdamW algorithm. The model’s performance was evaluated using classification accuracy (CA), F1-score, recall, precision, Matthews correlation coefficient, Cohen’s kappa and confusion matrix metrics. The results yielded promising CAs: 0.9847 for BD-Freshwater-Fish, 0.9964 for SmallFishBD, and 0.9932 for the FishSpecies dataset. These results underscore the potential of the SwinFishNet in automating FSC and demonstrate its significant contributions to improving sustainability, market efficiency, and food safety in the seafood industry. This work offers a novel methodology with broad applications in both commercial and research settings, advancing the role of artificial intelligence in the fish market. 
653 |a Freshwater fish 
653 |a Accuracy 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Fish 
653 |a Sustainability 
653 |a Task complexity 
653 |a Image processing 
653 |a Computer vision 
653 |a Classification 
653 |a Automation 
653 |a Species classification 
653 |a Machine learning 
653 |a Correlation coefficient 
653 |a Deep learning 
653 |a Correlation coefficients 
653 |a Transfer learning 
653 |a Efficiency 
653 |a Seafood 
653 |a Embedded systems 
653 |a Tensors 
653 |a Image classification 
653 |a Design 
653 |a Algorithms 
653 |a Food safety 
653 |a Environmental 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0322711 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206153670/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3206153670/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206153670/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch