Adversarial Attack on Autonomous Ships Navigation Using K-Means Clustering and CAM

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Advanced Computer Science and Applications vol. 16, no. 4 (2025)
Hovedforfatter: PDF
Udgivet:
Science and Information (SAI) Organization Limited
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3206239516
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.01604104  |2 doi 
035 |a 3206239516 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Adversarial Attack on Autonomous Ships Navigation Using K-Means Clustering and CAM 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a As Maritime Autonomous Surface Ships (MASSs) increasingly become part of global maritime operations, the reliability and security of their object detection systems have become a major concern. These systems, which play a crucial role in identifying small yet critical maritime objects such as buoys, vessels, and kayaks, are particularly susceptible to adversarial attacks, especially clean-label poisoning attacks. These attacks introduce subtle manipulations into training data without altering their true labels, thereby inducing misclassification during model inference and threatening navigational safety. The objective of this study is to evaluate the vulnerability of maritime object detection models to such attacks and to propose an integrated adversarial framework to expose and analyze these weaknesses. A novel attack method is developed using K-means clustering to segment similar object regions and Class Activation Mapping (CAM) to identify high-importance zones in image data. Adversarial perturbations are then applied within these zones to craft poisoned inputs that target the YOLOv5 object detection model. Experimental validation is performed using the Singapore Marine Dataset (SMD and SMD-Plus), and performance is measured under different perturbation intensities. The results reveal a considerable decline in detection accuracy—especially for small and mid-sized vessels—demonstrating the effectiveness of the attack and its capacity to remain imperceptible to human observers. This research highlights a critical gap in the security posture of AI-based navigation systems and emphasizes the urgent need to develop maritime-specific adversarial defense strategies for ensuring robust and resilient MASS deployment. 
651 4 |a Singapore 
653 |a Navigation systems 
653 |a Sea vessels 
653 |a Labels 
653 |a Autonomous navigation 
653 |a Cluster analysis 
653 |a Security 
653 |a Object recognition 
653 |a Ships 
653 |a Clustering 
653 |a Kayaks 
653 |a Perturbation 
653 |a Vector quantization 
653 |a Target detection 
653 |a Machine learning 
653 |a Data integrity 
653 |a Deep learning 
653 |a Datasets 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Maritime industry 
653 |a Cybersecurity 
653 |a Defense mechanisms 
653 |a Poisons 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 4 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206239516/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206239516/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch