A Robust Defense Mechanism Against Adversarial Attacks in Maritime Autonomous Ship Using GMVAE+RL

Spremljeno u:
Bibliografski detalji
Izdano u:International Journal of Advanced Computer Science and Applications vol. 16, no. 4 (2025)
Glavni autor: PDF
Izdano:
Science and Information (SAI) Organization Limited
Teme:
Online pristup:Citation/Abstract
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3206239596
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.01604106  |2 doi 
035 |a 3206239596 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a A Robust Defense Mechanism Against Adversarial Attacks in Maritime Autonomous Ship Using GMVAE+RL 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a In this paper, we propose a robust defense frame-work combining Gaussian Mixture Variational Autoencoders (GMVAE) with Reinforcement Learning (RL) to counter adversarial attacks in Maritime Autonomous Systems, specifically targeting the Singapore Maritime Database. By modeling complex maritime data distributions through GMVAE and dynamically adapting decision boundaries via RL, our approach establishes a resilient latent representation space that effectively identifies and mitigates adversarial perturbations. Experimental evaluations using adversarial methods such as FGSM, IFGSM, DeepFool, and Carlini-Wagner attacks demonstrate that the proposed GMVAE+RL model outperforms traditional defenses in both accuracy and robustness. Specifically, it achieves a peak accuracy of 87% and robustness of 20.5%, compared to 85.8% and 19.2%for FGSM and significantly lower values for other methods. These results underscore the superiority of our method in ensuring data integrity and operational reliability within complex maritime environments facing evolving cyber threats. 
651 4 |a Singapore 
653 |a Accuracy 
653 |a Robustness 
653 |a Defense mechanisms 
653 |a Data integrity 
653 |a Computer science 
653 |a Automation 
653 |a Artificial intelligence 
653 |a Maritime industry 
653 |a Decision making 
653 |a Efficiency 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 4 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206239596/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206239596/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch