From Code Analysis to Fault Localization: A Survey of Graph Neural Network Applications in Software Engineering

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 4 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3206239759
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160461  |2 doi 
035 |a 3206239759 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a From Code Analysis to Fault Localization: A Survey of Graph Neural Network Applications in Software Engineering 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Graph Neural Networks (GNNs) represent a class of deep machine learning algorithms for analyzing or processing data in graph structure. Most software development activities, such as fault localization, code analysis, and measures of software quality, are inherently graph-like. This survey assesses GNN applications in different subfields of software engineering with special attention to defect identification and other quality assurance processes. A summary of the current state-of-the-art is presented, highlighting important advances in GNN methodologies and their application in software engineering. Further, the factors that limit the current solutions in terms of their use for a wider range of tasks are also considered, including scalability, interpretability, and compatibility with other tools. Some suggestions for future work are presented, including the enhancement of new architectures of GNNs, the enhancement of the interpretability of GNNs, and the design of a large-scale dataset of GNNs. The survey will, therefore, provide detailed insight into how the application of GNNs offers the possibility of enhancing software development processes and the quality of the final product. 
653 |a Algorithms 
653 |a Data processing 
653 |a Machine learning 
653 |a Quality assurance 
653 |a Fault location 
653 |a Graph neural networks 
653 |a Software development 
653 |a Software quality 
653 |a Computer science 
653 |a Graphs 
653 |a Neural networks 
653 |a Quality control 
653 |a Localization 
653 |a Research & development--R&D 
653 |a Software engineering 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 4 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206239759/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206239759/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch