WOAAEO: A Hybrid Whale Optimization and Artificial Ecosystem Optimization Algorithm for Energy-Efficient Clustering in Internet of Things-Enabled Wireless Sensor Networks

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:International Journal of Advanced Computer Science and Applications vol. 16, no. 4 (2025)
Yazar: PDF
Baskı/Yayın Bilgisi:
Science and Information (SAI) Organization Limited
Konular:
Online Erişim:Citation/Abstract
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3206239761
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160465  |2 doi 
035 |a 3206239761 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a WOAAEO: A Hybrid Whale Optimization and Artificial Ecosystem Optimization Algorithm for Energy-Efficient Clustering in Internet of Things-Enabled Wireless Sensor Networks 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a In the Internet of Things (IoT) era, energy efficiency in Wireless Sensor Networks (WSNs) is of utmost importance given the finite power resources of sensor nodes. An efficient Cluster Head (CH) selection greatly influences network performance and lifetime. This paper suggests a novel energy-efficient clustering protocol that hybridizes Whale Optimization Algorithm (WOA) and Artificial Ecosystem Optimization (AEO), called WOAAEO. It utilizes the exploration capabilities of AEO and the exploitation strengths of WOA in optimizing CH selection and balancing energy consumption and network efficiency. The proposed method is structured into two phases: CH selection using the WOAAEO algorithm and cluster formation based on Euclidean distance. The new method was modeled in MATLAB and compared with current algorithms. Results show that WOAAEO increases the network lifetime by a maximum of 24%, enhances the packet delivery rate by a maximum of 21%, and reduces energy consumption by a maximum of 35% compared to related algorithms. The results show that WOAAEO can be a suitable solution to help resolve energy-saving issues in WSNs and can thus be applied to IoT without any issues. 
653 |a Algorithms 
653 |a Internet of Things 
653 |a Energy consumption 
653 |a Clustering 
653 |a Euclidean geometry 
653 |a Wireless sensor networks 
653 |a Optimization 
653 |a Energy conservation 
653 |a Deep learning 
653 |a Computer science 
653 |a Exploitation 
653 |a Protocol 
653 |a Optimization techniques 
653 |a Data compression 
653 |a Fuzzy logic 
653 |a Simulation 
653 |a Sensors 
653 |a Data collection 
653 |a Energy efficiency 
653 |a Optimization algorithms 
653 |a Data transmission 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 4 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206239761/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206239761/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch