An Improved Sparrow Search Algorithm for Flexible Job-Shop Scheduling Problem with Setup and Transportation Time

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 4 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3206239929
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160442  |2 doi 
035 |a 3206239929 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a An Improved Sparrow Search Algorithm for Flexible Job-Shop Scheduling Problem with Setup and Transportation Time 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a This study addresses the low production efficiency in manufacturing enterprises caused by the diversification of order products, small batches, and frequent production changeovers. Focusing on minimizing the makespan, this study establishes a Flexible Job-Shop Scheduling Problem (FJSP) model incorporating machine setup and workpiece transportation times, and proposes an improved sparrow search algorithm to effectively solve the problem. Based on the sparrow search algorithm, this study proposes a novel location update strategy that expands the search direction in each dimension and strengthens each individual’s local search capability. In addition, a critical-path-based neighborhood search strategy is introduced to enhance individual search efficiency, and an earliest completion time priority rule is employed during population initialization to further improve solution quality. Several experiments are conducted to validate the effectiveness of the improved strategy, and the results are compared with those obtained using the particle swarm optimization and gray wolf optimization algorithms to demonstrate the efficiency of the proposed model and algorithm. The improved sparrow search algorithm can effectively generate feasible solutions for large-scale problems, provide practical manufacturing scheduling schemes, and enhance the production efficiency of manufacturing enterprises. 
653 |a Particle swarm optimization 
653 |a Search algorithms 
653 |a Workpieces 
653 |a Manufacturing 
653 |a Search methods 
653 |a Completion time 
653 |a Job shop scheduling 
653 |a Efficiency 
653 |a Mathematical programming 
653 |a Scheduling 
653 |a Integer programming 
653 |a Computer science 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Job shops 
653 |a Workloads 
653 |a Energy consumption 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 4 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206239929/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206239929/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch