Deep Learning-Based UI Design Analysis: Object Detection and Image Retrieval Using YOLOv8

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:International Journal of Advanced Computer Science and Applications vol. 16, no. 4 (2025)
Egile nagusia: PDF
Argitaratua:
Science and Information (SAI) Organization Limited
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3206239957
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.01604103  |2 doi 
035 |a 3206239957 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Deep Learning-Based UI Design Analysis: Object Detection and Image Retrieval Using YOLOv8 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Data-driven design models support various types of mobile application design, such as design search, promoting a better understanding of best practices and trends. Designing the well User Interface (UI) makes the application practical and easy to use and contributes significantly to the application’s success. Therefore, searching for UI design examples helps gain inspiration and compare design alternatives. However, searching for relevant design examples from large-scale UI datasets is challenging and not easily stricken. The current search approaches rely on various input types, and most of them have limitations that affect their accuracy and performance. This research proposed a model that provides a fine-grained search for relevant UI design examples based on UI screen input. The proposed model will contain two phases. Object detection was implemented using the deep learning model ‘YOLOv8’, achieving 95% precision and 97% average precision. Image retrieval, leveraging the cosine similarity technique to retrieve the top 3 images similar to the input. These results highlight the system’s effectiveness in accurately detecting and retrieving relevant UI elements, providing a valuable tool for UI designers. 
653 |a Design analysis 
653 |a Applications programs 
653 |a Searching 
653 |a Retrieval 
653 |a Mobile computing 
653 |a Best practice 
653 |a Images 
653 |a User interfaces 
653 |a Object recognition 
653 |a Deep learning 
653 |a User interface 
653 |a Accuracy 
653 |a Usability 
653 |a Datasets 
653 |a Computer science 
653 |a Brain cancer 
653 |a Success 
653 |a Trends 
653 |a Computer vision 
653 |a Mobile communications networks 
653 |a Image retrieval 
653 |a Design 
653 |a Designers 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 4 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206239957/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206239957/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch