Investigation of Hydrate-Free Condition During Carbon Dioxide Injection into Low-Temperature Water Zones for Locking Carbon Dioxide Safely

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Islam, Muhammad Towhidul
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3206350241
003 UK-CbPIL
020 |a 9798315731788 
035 |a 3206350241 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Islam, Muhammad Towhidul 
245 1 |a Investigation of Hydrate-Free Condition During Carbon Dioxide Injection into Low-Temperature Water Zones for Locking Carbon Dioxide Safely 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This study analysis the behavior of CO₂ hydrate formation in porous media under dynamic flow conditions, based on the effects of water salinity and temperature variation. Experiments were performed in fresh water and brine-saturated cores at temperatures ranging from 1°C to 3°C with a varying CO₂ injection flowrate of 20, 30, 40 ml/min.Experimental results illustrate that in fresh water-saturated cores, CO₂ hydrate formation required higher pressure in dynamic conditions compared to static conditions. At 1°C, hydrate formed at 395 psi under dynamic flow, nearly 2.20 times higher than the static condition pressure of 180 psi. With increasing temperature, this pressure ratio decreased gradually, reaching 2.05 at 2°C (static: 220 psi; dynamic: 450 psi) and further to 1.96 at 3°C (static: 275 psi; dynamic: 540 psi). This proportion explains that higher temperatures reduce hydrate formation tendency and plugging severity.Due to the inhibitory effect of salinity at 3°C, hydrate formation pressure in brine-saturated cores increased to 690 psi, which is 1.27 times higher than in fresh water. The salts present in brine solution lowered water activity and hindered hydrate nucleation, requiring additional pressure for hydrate formation.This study provides valuable insights for designing CO₂ sequestration operations, emphasizing the importance of temperature, salinity, and flow conditions in controlling hydrate formation and mitigating flow assurance challenges in subsurface storage. 
653 |a Petroleum engineering 
653 |a Environmental studies 
653 |a Environmental engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206350241/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206350241/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch