Single channel medical images enhancement using fractional derivatives

Guardado en:
Bibliografiske detaljer
Udgivet i:PLoS One vol. 20, no. 5 (May 2025), p. e0319990
Hovedforfatter: Singh, Anand
Andre forfattere: Sajid, Mohammad, Tiwari, Naveen Kumar, Shukla, Anurag
Udgivet:
Public Library of Science
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3206475045
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0319990  |2 doi 
035 |a 3206475045 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Singh, Anand 
245 1 |a Single channel medical images enhancement using fractional derivatives 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a The current research uses the Grünwald–Letnikov (GL) fractional differential mask to improve satellite and medical images. One of the important image enhancement methods in digital image processing is texture enhancement. A fractional differential-based two-dimensional discrete gradient operator is based on the definition of Grünwald–Letnikov (GL) interpretation of fractional calculus, which is extended from a one-dimensional operator through the analysis of its spectrum to improve the image texture. Which then extracts more subtle texture information, and gets around the lack of a classical gradient operator. Based on the GL fractional differential, an approximate two-dimensional isotropic gradient operator mask was created using the GL fractional derivative, the technique generates and pixel-sized masks that preserve the correlation between neighboring pixels. The strength of the mask, which was a variable and non-linear filter, could be changed by varying the intensity factor to enhance the image. Experimental results show that the operator may emphasize the texture and obtain more complex information. Compared to the conventional classical methods, the suggested way has an excellent promotional effect on texture enhancement compared to the previous method on grayscale images. 
653 |a Calculus 
653 |a Digital imaging 
653 |a Pixels 
653 |a Adaptability 
653 |a Image enhancement 
653 |a Operators (mathematics) 
653 |a Satellite imagery 
653 |a Medical imaging 
653 |a Fractals 
653 |a Approximation 
653 |a Image processing 
653 |a Methods 
653 |a Fractional calculus 
653 |a Algorithms 
653 |a Dimensional analysis 
653 |a Masks 
653 |a Texture 
653 |a Environmental 
700 1 |a Sajid, Mohammad 
700 1 |a Tiwari, Naveen Kumar 
700 1 |a Shukla, Anurag 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0319990 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206475045/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3206475045/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206475045/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch