Prediction of Length of Stay Among Preeclamptic Patients Using Supervised Learning Methods

Guardat en:
Dades bibliogràfiques
Publicat a:ProQuest Dissertations and Theses (2025)
Autor principal: Tah, Nolvenne Leama
Publicat:
ProQuest Dissertations & Theses
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3206810238
003 UK-CbPIL
020 |a 9798315718000 
035 |a 3206810238 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Tah, Nolvenne Leama 
245 1 |a Prediction of Length of Stay Among Preeclamptic Patients Using Supervised Learning Methods 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Hypertensive disorders during pregnancy, particularly preeclampsia, are among the leading causes of maternal and neonatal mortality. In the United States, preeclampsia affects approximately 2 to 8% of pregnancies, with a higher incidence among African American women (6.04%) compared to Caucasian women (3.75%). Due to its severity, preeclampsia often requires intensive care unit (ICU) intervention, resulting in prolonged hospital stays. This study aims to predict the length of stay (LOS) for preeclamptic patients using supervised machine learning on a highly imbalanced dataset. We adopted two modeling approaches: classification and regression, and evaluated multiple algorithms, including logistic regression, decision tree, SVM, KNN, random forest, XGBoost, linear regression, and elastic net. To address class imbalance, we employed oversampling techniques (SMOTE, ADASYN, SMOGN) and cost sensitive learning strategies. Our findings show that cost sensitive logistic regression achieved the highest classification performance with AUC of 66% and G-mean of 60%. Additionally, the analysis revealed that African American women tend to have longer hospital stays. This research supports improved hospital resource allocation, staff planning, and early intervention for high risk cases, contributing to more efficient and equitable healthcare delivery. 
653 |a Industrial engineering 
653 |a Computer science 
653 |a Computer engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206810238/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206810238/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch