EFCRFNet: A novel multi-scale framework for salient object detection

保存先:
書誌詳細
出版年:PLoS One vol. 20, no. 5 (May 2025), p. e0323757
第一著者: Peng, Hong
その他の著者: Hu, Yunfei, Yu, Baocai, Zhang, Zhen
出版事項:
Public Library of Science
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3206832778
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0323757  |2 doi 
035 |a 3206832778 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Peng, Hong 
245 1 |a EFCRFNet: A novel multi-scale framework for salient object detection 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a Salient Object Detection (SOD) is a fundamental task in computer vision, aiming to identify prominent regions within images. Traditional methods and deep learning-based models often encounter challenges in capturing crucial information in complex scenes, particularly due to inadequate edge feature extraction, which compromises the precise delineation of object contours and boundaries. To address these challenges, we introduce EFCRFNet, a novel multi-scale feature extraction model that incorporates two innovative modules: the Enhanced Conditional Random Field (ECRF) and the Edge Feature Enhancement Module (EFEM). The ECRF module leverages advanced spatial attention mechanisms to enhance multimodal feature fusion, enabling robust detection in complex environments. Concurrently, the EFEM module focuses on refining edge features to strengthen multi-scale feature representation, significantly improving boundary recognition accuracy. Extensive experiments on standard benchmark datasets demonstrate that EFCRFNet achieves notable performance gains across key evaluation metrics, including MAE (0.64%), Fm (1.04%), Em (8.73%), and Sm (7.4%). These results underscore the effectiveness of EFCRFNet in enhancing detection accuracy and optimizing feature fusion, advancing the state of the art in salient object detection. 
653 |a Innovations 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Conditional random fields 
653 |a Salience 
653 |a Computer vision 
653 |a Modules 
653 |a Algorithms 
653 |a Object recognition 
653 |a Localization 
653 |a Efficiency 
653 |a Semantics 
653 |a Thermography 
653 |a Environmental 
700 1 |a Hu, Yunfei 
700 1 |a Yu, Baocai 
700 1 |a Zhang, Zhen 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0323757 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3206832778/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3206832778/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3206832778/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch