A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Guardado en:
書目詳細資料
發表在:Geoscientific Model Development vol. 18, no. 10 (2025), p. 3017
主要作者: Jendersie, Robert
其他作者: Lessig, Christian, Richter, Thomas
出版:
Copernicus GmbH
主題:
在線閱讀:Citation/Abstract
Full Text
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 3207630135
003 UK-CbPIL
022 |a 1991-962X 
022 |a 1991-9603 
024 7 |a 10.5194/gmd-18-3017-2025  |2 doi 
035 |a 3207630135 
045 2 |b d20250101  |b d20251231 
084 |a 123629  |2 nlm 
100 1 |a Jendersie, Robert  |u Institute of Simulation and Graphics, Otto von Guericke University, Magdeburg, Germany; Institute of Analysis and Numerics, Otto von Guericke University, Magdeburg, Germany 
245 1 |a A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a The cryosphere plays a crucial role in the Earth's climate system, making accurate sea-ice simulation essential for improving climate projections. To achieve higher-resolution simulations, graphics processing units (GPUs) have become increasingly appealing due to their higher floating-point peak performance compared to central processing units (CPUs). However, harnessing the full theoretical performance of GPUs often requires significant effort in redesigning algorithms and careful implementation. Recently, several frameworks have emerged that aim to simplify general-purpose GPU programming. In this study, we evaluate multiple such frameworks, including CUDA, SYCL, Kokkos, and PyTorch, for the parallelization of neXtSIM-DG, a finite-element-based dynamical core for sea ice. Based on our assessment of usability and performance, CUDA demonstrates the best performance while Kokkos is a suitable option for its robust heterogeneous computing capabilities. Our complete implementation of the momentum equation using Kokkos achieves a 6-fold speedup on the GPU compared to our OpenMP-based CPU code, while maintaining competitiveness when run on the CPU. Additionally, we explore the use of lower-precision floating-point types on the GPU, showing that switching to single precision can further accelerate sea-ice codes. 
653 |a Central processing units--CPUs 
653 |a Competitiveness 
653 |a Investigations 
653 |a Sea ice 
653 |a Climate system 
653 |a Floating point arithmetic 
653 |a Climate change 
653 |a Linear algebra 
653 |a Cryosphere 
653 |a Momentum equation 
653 |a Machine learning 
653 |a Simulation 
653 |a Velocity 
653 |a Graphics 
653 |a Graphics processing units 
653 |a Algorithms 
653 |a Earth cryosphere 
653 |a Climate 
653 |a Floating 
653 |a Momentum 
653 |a Environmental 
700 1 |a Lessig, Christian  |u Institute of Simulation and Graphics, Otto von Guericke University, Magdeburg, Germany; European Centre for Medium-Range Weather Forecasts, Bonn, Germany 
700 1 |a Richter, Thomas  |u Institute of Analysis and Numerics, Otto von Guericke University, Magdeburg, Germany 
773 0 |t Geoscientific Model Development  |g vol. 18, no. 10 (2025), p. 3017 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3207630135/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3207630135/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3207630135/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch