A resource description framework (RDF) model of named entity co-occurrences in biomedical literature and its integration with PubChemRDF

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Cheminformatics vol. 17, no. 1 (Dec 2025), p. 79
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3207688749
003 UK-CbPIL
022 |a 1758-2946 
024 7 |a 10.1186/s13321-025-01017-0  |2 doi 
035 |a 3207688749 
045 2 |b d20251201  |b d20251231 
084 |a 113329  |2 nlm 
245 1 |a A resource description framework (RDF) model of named entity co-occurrences in biomedical literature and its integration with PubChemRDF 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Named entities, such as chemicals/drugs, genes/proteins, and diseases, and their associations are not only important components of biomedical literature, but also the foundation of creating biomedical knowledgebases and knowledge graphs. This work addresses the challenges of expressing co-occurrence associations between named entities extracted from a biomedical literature corpus in a machine-readable format. We developed a Resource Description Framework (RDF) data model and integrated it into the PubChemRDF resource, which is freely accessible and publicly available. The developed co-occurrence data model was populated into a triplestore with named entities and their associations derived from text mining of millions of biomedical references found in PubMed. The utility of the data model was demonstrated through multiple use cases. Together with meta-data modeling of the references including the information about the author, journal, grant, and funding agency, this data model allows researchers to address pertinent biomedical questions through SPARQL queries and helps to exploit biomedical knowledge in various user perspectives and use cases.Scientific contributionThe RDF data model developed in this work encodes co-occurrence associations among chemicals, genes, and diseases, derived from biomedical literature. The developed model enables researchers to use SPARQL queries to semantically explore biomedical knowledge and make new discoveries. It also seamlessly links to scientific data in other information resources, improving the usability and accessibility of biomedical data in the Semantic Web. 
653 |a Information resources 
653 |a Accessibility 
653 |a Data models 
653 |a Semantic web 
653 |a Knowledge bases (artificial intelligence) 
653 |a Biomedical data 
653 |a Data mining 
653 |a Resource Description Framework-RDF 
653 |a Queries 
653 |a Genes 
653 |a Knowledge representation 
653 |a Economic 
773 0 |t Journal of Cheminformatics  |g vol. 17, no. 1 (Dec 2025), p. 79 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3207688749/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3207688749/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch