Multiscale hierarchy denoising method for heritage building point cloud model noise removal

Guardat en:
Dades bibliogràfiques
Publicat a:Heritage Science vol. 13, no. 1 (Dec 2025), p. 199
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3207688753
003 UK-CbPIL
022 |a 2050-7445 
024 7 |a 10.1038/s40494-025-01639-5  |2 doi 
035 |a 3207688753 
045 2 |b d20251201  |b d20251231 
084 |a 243040  |2 nlm 
245 1 |a Multiscale hierarchy denoising method for heritage building point cloud model noise removal 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a In recent years, interest in the three-dimensional (3D) data documentation of heritage buildings has been growing. The collection of detailed and accurate 3D point-cloud information by acquiring heritage-building data has facilitated various applications. These applications encompass historical architectural information retrieval, preservation and monitoring, augmented reality, virtual reality, and the generation of heritage building information models. Point clouds originate from 3D scanners, human–computer interactions, and other devices exposed to unnecessary environments. In this context, point clouds are inevitably affected by noise and outliers. Factors contributing to noise include the limitations of sensors, device defects, and the illumination or reflection characteristics of the studied objects. Thus, addressing noise and outliers presents a challenge when storing point cloud data. Denoising is a critical step in data processing for point clouds when applied to heritage architecture. The accuracy of the point cloud model in heritage architecture is highly dependent on noise and outliers. This study proposes a multiscale hierarchy denoising method, the process of which is as follows. First, we divided the point cloud model of heritage architecture according to the architectural structure. The density-based spatial clustering of applications with noise algorithm was then used to perform large-scale point cloud denoising. For small-scale noise, denoising is achieved on a macroscopic basis by systematically removing noise and outliers from the heritage architectural point cloud model using statistical and bilateral filtering techniques. This process improves the quality and accuracy of point cloud data related to heritage buildings. 
653 |a Accuracy 
653 |a Outliers (statistics) 
653 |a Augmented reality 
653 |a Data processing 
653 |a Data acquisition 
653 |a Virtual reality 
653 |a Information retrieval 
653 |a Clustering 
653 |a Noise reduction 
653 |a Three dimensional models 
653 |a Algorithms 
653 |a Architecture 
653 |a Historical buildings 
653 |a Lasers 
653 |a Buildings 
653 |a Chinese history 
653 |a Cultural heritage 
773 0 |t Heritage Science  |g vol. 13, no. 1 (Dec 2025), p. 199 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3207688753/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3207688753/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch