MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Nano-Micro Letters vol. 17, no. 1 (Dec 2025), p. 273
Julkaistu:
Springer Nature B.V.
Aiheet:
Linkit:Citation/Abstract
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3208032790
003 UK-CbPIL
022 |a 2311-6706 
022 |a 2150-5551 
024 7 |a 10.1007/s40820-025-01787-0  |2 doi 
035 |a 3208032790 
045 2 |b d20251201  |b d20251231 
245 1 |a MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Highlights<list list-type="bullet"><list-item></list-item>This review reveals the advantages of MXene-Ti3C2Tx for neuromorphic devices, classifies the core physical mechanisms, and outlines strategies to drive targeted optimization and future innovation.<list-item>The review outlines three key engineering strategies: doping engineering, interfacial engineering, and structural engineering, while also providing comprehensive guidance for material and device improvement.</list-item><list-item>MXene-Ti3C2Tx-based devices demonstrate groundbreaking potential in next-generation computing, such as near-sensor computing and in-sensor computing, enabling faster and more energy-efficient data processing directly at the sensor level.</list-item>Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption. MXene-Ti3C2Tx, an emerging two-dimensional material, stands out as an ideal candidate for fabricating neuromorphic devices. Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose. This review aims to uncover the advantages and properties of MXene-Ti3C2Tx in neuromorphic devices and to promote its further development. Firstly, we categorize several core physical mechanisms present in MXene-Ti3C2Tx neuromorphic devices and summarize in detail the reasons for their formation. Then, this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti3C2Tx, such as doping engineering, interface engineering, and structural engineering. Significantly, this work highlights innovative applications of MXene-Ti3C2Tx neuromorphic devices in cutting-edge computing paradigms, particularly near-sensor computing and in-sensor computing. Finally, this review carefully compiles a table that integrates almost all research results involving MXene-Ti3C2Tx neuromorphic devices and discusses the challenges, development prospects, and feasibility of MXene-Ti3C2Tx-based neuromorphic devices in practical applications, aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti3C2Tx in the field of neuromorphic devices. 
653 |a Performance enhancement 
653 |a Doping 
653 |a Neuromorphic computing 
653 |a Data processing 
653 |a Edge computing 
653 |a Sensors 
653 |a Optimization 
653 |a Mechanical properties 
653 |a MXenes 
653 |a Cutting equipment 
653 |a Structural engineering 
653 |a Devices 
653 |a Energy consumption 
653 |a Two dimensional materials 
773 0 |t Nano-Micro Letters  |g vol. 17, no. 1 (Dec 2025), p. 273 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3208032790/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3208032790/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch