Quantum-enhanced digital twin IoT for efficient healthcare task offloading

Guardado en:
Detalles Bibliográficos
Publicado en:SN Applied Sciences vol. 7, no. 6 (Jun 2025), p. 525
Autor principal: Jameil, Ahmed K.
Otros Autores: Al-Raweshidy, Hamed
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3208257343
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07101-2  |2 doi 
035 |a 3208257343 
045 2 |b d20250601  |b d20250630 
100 1 |a Jameil, Ahmed K.  |u Brunel University of London, College of Engineering, Design and Physical Sciences, London, UK (GRID:grid.7728.a) (ISNI:0000 0001 0724 6933); University of Diyala, Department of Computer Engineering, College of Engineering, Baqubah, Iraq (GRID:grid.442846.8) (ISNI:0000 0004 0417 5115) 
245 1 |a Quantum-enhanced digital twin IoT for efficient healthcare task offloading 
260 |b Springer Nature B.V.  |c Jun 2025 
513 |a Journal Article 
520 3 |a Task offloading frameworks play a crucial role in modern healthcare by optimizing resource utilization, reducing computational burdens, and enabling real-time medical decision-making. However, existing Digital Twin (DT)-based healthcare models suffer from high latency, inefficient resource allocation, cybersecurity vulnerabilities, and computational limitations when processing large-scale patient data. These constraints pose significant risks in time-sensitive applications such as ICU monitoring, robotic-assisted surgeries, and telemedicine. To address these limitations, this paper introduces a Quantum-Enhanced DT-IoT framework, integrating Artificial Intelligence (AI), Quantum Computing (QC), DT, and the Internet of Things (IoT) for real-time, secure, and efficient healthcare task offloading. The proposed system introduces two key optimization algorithms: (1) DTH-ATB-MAPPO, which dynamically adjusts task scheduling and resource distribution, and (2) AQDT-IoT, which enhances computational efficiency and cybersecurity compliance in 6&#xa0;G-enabled IoT networks. By leveraging Approximate Amplitude Encoding (AAE) and Grover’s search, the framework enhances task offloading efficiency, enabling faster decision-making and optimized resource distribution across 6&#xa0;G-enabled IoT networks. Empirical evaluations show that quantum preprocessing improved Task Offloading Success Rate (TOSR) by 32% and reduced the Error Rate (ER) by 80%, significantly outperforming traditional DT-based healthcare models. These enhancements enable. Additionally, theoretical analysis demonstrates computational speed enhancements, adaptive cybersecurity mechanisms, and improved system scalability, positioning this framework as a viable candidate for future cloud-based quantum healthcare infrastructures, even in resource-constrained hospital environments.Article Highlights<list list-type="bullet"><list-item></list-item>The integration of quantum computing in healthcare accelerates operational tasks, allowing for smoother task delegation and a reduction in computational faults.<list-item>Advanced quantum models optimize resource allocation, decrease expenses, and prolong the operational lifespan of wearable medical technologies.</list-item><list-item>A robust and scalable quantum architecture fortifies AI-enhanced healthcare, guaranteeing instantaneous diagnostics and remote patient care.</list-item> 
653 |a Quantum computing 
653 |a Task scheduling 
653 |a Predictive analytics 
653 |a Internet of Things 
653 |a Theoretical analysis 
653 |a Telemedicine 
653 |a Health care 
653 |a Optimization 
653 |a Resource allocation 
653 |a Computer applications 
653 |a Robotic surgery 
653 |a Telerobotics 
653 |a Medical technology 
653 |a Efficiency 
653 |a Scheduling 
653 |a Decision making 
653 |a Network latency 
653 |a Computation offloading 
653 |a Resource scheduling 
653 |a Artificial intelligence 
653 |a Algorithms 
653 |a Compliance 
653 |a Surveillance 
653 |a Latency 
653 |a Resource utilization 
653 |a Patients 
653 |a Real time 
653 |a Life span 
653 |a Cybersecurity 
653 |a Mental task performance 
653 |a Data processing 
653 |a Digital twins 
653 |a Cloud computing 
653 |a Data collection 
653 |a Data transmission 
653 |a Economic 
700 1 |a Al-Raweshidy, Hamed  |u Brunel University of London, College of Engineering, Design and Physical Sciences, London, UK (GRID:grid.7728.a) (ISNI:0000 0001 0724 6933) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 6 (Jun 2025), p. 525 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3208257343/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3208257343/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3208257343/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch