Boosting Arabic text classification using hybrid deep learning approach

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:SN Applied Sciences vol. 7, no. 6 (Jun 2025), p. 540
প্রকাশিত:
Springer Nature B.V.
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3211745890
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07025-x  |2 doi 
035 |a 3211745890 
045 2 |b d20250601  |b d20250630 
245 1 |a Boosting Arabic text classification using hybrid deep learning approach 
260 |b Springer Nature B.V.  |c Jun 2025 
513 |a Journal Article 
520 3 |a As a significant natural language processing task (NLP), Arabic text classification is essential for efficiently processing and analyzing Arabic language content in various digital forms, such as information retrieval, sentiment analysis, and topic modeling. Deep Learning architectures, such as convolutional neural networks (CNN) and long short-term memory (LSTM), have been widely utilized to categorize and organize language contents accurately to improve the autonomy and perception of NLP tasks. In this paper, we develop a hybrid deep learning framework for Arabic text classification, using the Inception-CNN (introduced in the GoogleNet architecture) and the LSTM (variation of the Recurrent Neural Network). Specifically, the proposed system has been trained and evaluated on two datasets of an Arabic articles dataset, viz. SANAD and NADiA datasets. Consequently, several variations of the model architecture have been configured, trained, evaluated, and compared, with the aim of obtaining the best model architecture and hyperparameters. Our best experimental evaluation showed that the proposed hybrid system (Inception CNN with and LSTM) yielded an accuracy of 92% and 96% for the Akhbarona and AlKhaleej datasets, respectively. At the same time, the entire SANAD data set also yielded a high accuracy of 92%. Lastly, comparing with the state-of-the-art models revealed the superiority of our hybrid model, which outperformed the other architectures in the same area of study, the accuracies have been improved by 1% to 30% for the different datasets.Article Highlights<list list-type="bullet"><list-item></list-item>Proposing a model that combines the Inception module (CNN architecture) and LSTM for Arabic Text Classification<list-item>Research conducted on a low-sourced language; Arabic, using the datasets SANAD and NADiA.</list-item><list-item>The proposed model has yielded an accuracy of 92% for SANAD and 89% for NADiA, which outperformed other compared architectures.</list-item> 
653 |a Arabic language 
653 |a Text categorization 
653 |a Internet 
653 |a Datasets 
653 |a Deep learning 
653 |a Classification 
653 |a Computer architecture 
653 |a English language 
653 |a Information retrieval 
653 |a Language 
653 |a Artificial neural networks 
653 |a Long short-term memory 
653 |a Machine learning 
653 |a Accuracy 
653 |a Sentiment analysis 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Recurrent neural networks 
653 |a Natural language processing 
653 |a Information processing 
653 |a Algorithms 
653 |a Hybrid systems 
653 |a Decision trees 
653 |a Large language models 
653 |a Economic 
773 0 |t SN Applied Sciences  |g vol. 7, no. 6 (Jun 2025), p. 540 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211745890/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3211745890/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211745890/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch