Low-voltage temperature-insensitive logarithmic and exponential function current generators using only npn transistors

Guardado en:
Detalles Bibliográficos
Publicado en:EUREKA: Physics and Engineering no. 1 (2025), p. 75
Autor principal: Pukkalanun, Tattaya
Otros Autores: Satansup, Jetsdaporn, Maneerat, Sutassa, Worapong Tangsrirat, Roongmuanpha, Natchanai
Publicado:
Scientific Route OÜ
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211762233
003 UK-CbPIL
022 |a 2461-4254 
022 |a 2461-4262 
024 7 |a 10.21303/2461-4262.2025.003540  |2 doi 
035 |a 3211762233 
045 2 |b d20250101  |b d20250228 
100 1 |a Pukkalanun, Tattaya 
245 1 |a Low-voltage temperature-insensitive logarithmic and exponential function current generators using only npn transistors 
260 |b Scientific Route OÜ  |c 2025 
513 |a Journal Article 
520 3 |a The continuing reduction of supply voltage for reliable operation of analog integrated circuits is widely recognized. Analog circuits must adhere to this trend. As a result, researchers are currently developing low-voltage analog circuit methodologies. Current-mode signal processing circuits are examples of these concepts. Therefore, the objective of this work is to present circuit realizations of low-voltage current-mode logarithmic and exponential function generators with temperature compensation. Both the input and output signals operate in current mode. The design approach utilizes the current-mode translinear technique to produce the output currents that exhibit a directly proportionality to the absolute values of the logarithmic and exponential functions. By simply adjusting the external bias currents, one can electronically tune the output currents and transfer current gains for both proposed circuits. The proposed circuits utilize only npn bipolar transistors and can operate with low-level supply voltages of ±1V, which are appropriate for low-power, high-frequency applications. Nonideality performance considerations are also discussed in detail. In order to verify the operational function of the circuits and illustrate their superior thermal stability, the PSPICE simulation has been performed using real transistor models provided for the HFA3096 mixed bipolar array technology. The simulation findings illustrate that the proposed logarithmic and exponential amplifier circuits can compensate for temperature variations, as evidenced by the good stability of their output currents over a temperature range of -40 °C to 100 °C. 
653 |a Logarithms 
653 |a Temperature compensation 
653 |a Thermal stability 
653 |a Signal processing 
653 |a Integrated circuits 
653 |a Electric potential 
653 |a Exponential functions 
653 |a Voltage 
653 |a Bipolar transistors 
653 |a Analog circuits 
653 |a Circuits 
653 |a Function generators 
653 |a Semiconductor devices 
653 |a Transistors 
653 |a Simulation 
700 1 |a Satansup, Jetsdaporn 
700 1 |a Maneerat, Sutassa 
700 1 |a Worapong Tangsrirat 
700 1 |a Roongmuanpha, Natchanai 
773 0 |t EUREKA: Physics and Engineering  |g no. 1 (2025), p. 75 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211762233/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211762233/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch