Research on the Method of Air Traffic Control Instruction Keyword Extraction Based on the Roberta-Attention-BiLSTM-CRF Model

Guardado en:
Bibliografiske detaljer
Udgivet i:Aerospace vol. 12, no. 5 (2025), p. 376
Hovedforfatter: Chen, Sheng
Andre forfattere: Pan Weijun, Wang, Yidi, Chen Shenhao, Wang, Xuan
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3211845560
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12050376  |2 doi 
035 |a 3211845560 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Chen, Sheng 
245 1 |a Research on the Method of Air Traffic Control Instruction Keyword Extraction Based on the Roberta-Attention-BiLSTM-CRF Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent years, with the increasing complexity of air traffic management and the rapid development of automation technology, efficiently and accurately extracting key information from large volumes of air traffic control (ATC) instructions has become essential for ensuring flight safety and improving the efficiency of air traffic control. However, this task is challenging due to the specialized terminology involved and the high real-time requirements for data collection and processing. While existing keyword extraction methods have made some progress, most of them still perform unsatisfactorily on ATC instruction data due to issues such as data irregularities and the lack of domain-specific knowledge. To address these challenges, this paper proposes a Roberta-Attention-BiLSTM-CRF model for keyword extraction from ATC instructions. The RABC model introduces an attention mechanism specifically designed to extract keywords from multi-segment ATC instruction texts. Moreover, the BiLSTM component enhances the model’s ability to capture detailed semantic information within individual sentences during the keyword extraction process. Finally, by integrating a Conditional Random Field (CRF), the model can predict and output multiple keywords in the correct sequence. Experimental results on an ATC instruction dataset demonstrate that the RABC model achieves an accuracy of 89.5% in keyword extraction and a sequence match accuracy of 91.3%, outperforming other models across multiple evaluation metrics. These results validate the effectiveness of the proposed model in extracting keywords from ATC instruction data and demonstrate its potential for advancing automation in air traffic control. 
653 |a Accuracy 
653 |a Traffic 
653 |a Aircraft accidents & safety 
653 |a Flight safety 
653 |a Deep learning 
653 |a Air traffic control 
653 |a Air traffic management 
653 |a Conditional random fields 
653 |a Data collection 
653 |a Automation 
653 |a Information retrieval 
653 |a Optimization 
653 |a Aviation 
653 |a Document management 
653 |a Real time 
653 |a Keywords 
653 |a Pilots 
653 |a Efficiency 
653 |a Semantics 
700 1 |a Pan Weijun 
700 1 |a Wang, Yidi 
700 1 |a Chen Shenhao 
700 1 |a Wang, Xuan 
773 0 |t Aerospace  |g vol. 12, no. 5 (2025), p. 376 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211845560/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211845560/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211845560/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch