Framework for the Multi-Objective Design Optimization of Aerocapture Missions

Guardado en:
书目详细资料
发表在:Aerospace vol. 12, no. 5 (2025), p. 387
主要作者: Urraza Atue Segundo
其他作者: Bruce, Paul
出版:
MDPI AG
主题:
在线阅读:Citation/Abstract
Full Text + Graphics
Full Text - PDF
标签: 添加标签
没有标签, 成为第一个标记此记录!

MARC

LEADER 00000nab a2200000uu 4500
001 3211845592
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12050387  |2 doi 
035 |a 3211845592 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Urraza Atue Segundo 
245 1 |a Framework for the Multi-Objective Design Optimization of Aerocapture Missions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Developing spacecraft for efficient aerocapture missions demands managing extreme aerothermal environments, precise controls, and atmospheric uncertainties. Successful designs must integrate vehicle airframe considerations with trajectory planning, adhering to launcher dimension constraints and ensuring robustness against atmospheric and insertion uncertainties. To advance robust multi-objective optimization in this field, a new framework is presented, designed to rapidly analyze and optimize non-thrusting, fixed angle-of-attack aerocapture-capable spacecraft and their trajectories. The framework employs a three-degree-of-freedom atmospheric flight dynamics model incorporating planet-specific characteristics. Aerothermal effects are approximated using established Sutton–Graves, Tauber–Sutton, and Stefan–Boltzmann relations. The framework computes the resulting post-atmospheric pass orbit using an orbital element determination algorithm to estimate fuel requirements for orbital corrective maneuvers. A novel algorithm that consolidates multiple objective functions into a unified cost function is presented and demonstrated to achieve superior optima with computational efficiency compared to traditional multi-objective optimization approaches. Numerical examples demonstrate the methodology’s effectiveness and computational cost at optimizing terrestrial and Martian aerocapture maneuvers for minimum fuel, heat loads, peak heat transfers, and an overall optimal trajectory, including volumetric considerations. 
653 |a Fuels 
653 |a Design optimization 
653 |a Atmospheric flight 
653 |a Trajectory optimization 
653 |a Success 
653 |a Orbital maneuvers 
653 |a Cost function 
653 |a Decision making 
653 |a Computational efficiency 
653 |a Missions 
653 |a Computing costs 
653 |a Algorithms 
653 |a Multiple objective analysis 
653 |a Spacecraft 
653 |a Airframes 
653 |a Aerocapture 
653 |a Trajectory planning 
653 |a Uncertainty 
700 1 |a Bruce, Paul 
773 0 |t Aerospace  |g vol. 12, no. 5 (2025), p. 387 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211845592/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211845592/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211845592/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch