Optical Camera Characterization for Feature-Based Navigation in Lunar Orbit

Sparad:
Bibliografiska uppgifter
I publikationen:Aerospace vol. 12, no. 5 (2025), p. 374
Huvudupphov: Federici Pierluigi
Övriga upphov: Genova, Antonio, Andolfo Simone, Ciambellini Martina, Teodori Riccardo, Torrini Tommaso
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3211845702
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12050374  |2 doi 
035 |a 3211845702 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Federici Pierluigi 
245 1 |a Optical Camera Characterization for Feature-Based Navigation in Lunar Orbit 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate localization is a key requirement for deep-space exploration, enabling spacecraft operations with limited ground support. Upcoming commercial and scientific missions to the Moon are designed to extensively use optical measurements during low-altitude orbital phases, descent and landing, and high-risk operations, due to the versatility and suitability of these data for onboard processing. Navigation frameworks based on optical data analysis have been developed to support semi- or fully-autonomous onboard systems, enabling precise relative localization. To achieve high-accuracy navigation, optical data have been combined with complementary measurements using sensor fusion techniques. Absolute localization is further supported by integrating onboard maps of cataloged surface features, enabling position estimation in an inertial reference frame. This study presents a navigation framework for optical image processing aimed at supporting the autonomous operations of lunar orbiters. The primary objective is a comprehensive characterization of the navigation camera’s properties and performance to ensure orbit determination uncertainties remain below 1% of the spacecraft altitude. In addition to an analysis of measurement noise, which accounts for both hardware and software contributions and is evaluated across multiple levels consistent with prior literature, this study emphasizes the impact of process noise on orbit determination accuracy. The mismodeling of orbital dynamics significantly degrades orbit estimation performance, even in scenarios involving high-performing navigation cameras. To evaluate the trade-off between measurement and process noise, representing the relative accuracy of the navigation camera and the onboard orbit propagator, numerical simulations were carried out in a synthetic lunar environment using a near-polar, low-altitude orbital configuration. Under nominal conditions, the optical measurement noise was set to 2.5 px, corresponding to a ground resolution of approximately 160 m based on the focal length, pixel pitch, and altitude of the modeled camera. With a conservative process noise model, position errors of about 200 m are observed in both transverse and normal directions. The results demonstrate the estimation framework’s robustness to modeling uncertainties, adaptability to varying measurement conditions, and potential to support increased onboard autonomy for small spacecraft in deep-space missions. 
653 |a Altitude 
653 |a Deep space 
653 |a Moon 
653 |a Orbit determination 
653 |a Space exploration 
653 |a Accuracy 
653 |a Data analysis 
653 |a Satellite communications 
653 |a Lunar environments 
653 |a Cameras 
653 |a Navigation systems 
653 |a Spacecraft 
653 |a Localization 
653 |a Optical measurement 
653 |a Image processing 
653 |a Inertial coordinates 
653 |a Uncertainty 
653 |a Lunar orbits 
653 |a Inertial reference systems 
653 |a Navigation 
653 |a Low altitude 
653 |a Space missions 
653 |a Noise measurement 
653 |a Numerical simulations 
653 |a Onboard 
653 |a Onboard equipment 
653 |a Optical data processing 
653 |a Algorithms 
653 |a Spacecraft autonomy 
653 |a Position errors 
653 |a Orbital mechanics 
700 1 |a Genova, Antonio 
700 1 |a Andolfo Simone 
700 1 |a Ciambellini Martina 
700 1 |a Teodori Riccardo 
700 1 |a Torrini Tommaso 
773 0 |t Aerospace  |g vol. 12, no. 5 (2025), p. 374 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211845702/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211845702/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211845702/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch