Automated Detection and Counting of Gossypium barbadense Fruits in Peruvian Crops Using Convolutional Neural Networks

Guardado en:
Detalles Bibliográficos
Publicado en:AgriEngineering vol. 7, no. 5 (2025), p. 152
Autor principal: Ballena-Ruiz, Juan
Otros Autores: Arcila-Diaz, Juan, Tuesta-Monteza Victor
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211845950
003 UK-CbPIL
022 |a 2624-7402 
024 7 |a 10.3390/agriengineering7050152  |2 doi 
035 |a 3211845950 
045 2 |b d20250101  |b d20251231 
100 1 |a Ballena-Ruiz, Juan 
245 1 |a Automated Detection and Counting of <i>Gossypium barbadense</i> Fruits in Peruvian Crops Using Convolutional Neural Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study presents the development of a system based on convolutional neural networks for the automated detection and counting of Gossypium barbadense fruits, specifically the IPA cotton variety, during its maturation stage, known as “mota”, in crops located in the Lambayeque region of northern Peru. To achieve this, a dataset was created using images captured with a mobile device. After applying data augmentation techniques, the dataset consisted of 2186 images with 70,348 labeled fruits. Five deep learning models were trained: two variants of YOLO version 8 (nano and extra-large), two of YOLO version 11, and one based on the Faster R-CNN architecture. The dataset was split into 70% for training, 15% for validation, and 15% for testing, and all models were trained over 100 epochs with a batch size of 8. The extra-large YOLO models achieved the highest performance, with precision scores of 99.81% and 99.78%, respectively, and strong recall and F1-score values. In contrast, the nano models and Faster R-CNN showed slightly lower effectiveness. Additionally, the best-performing model was integrated into a web application developed in Python, enabling automated fruit counting from field images. The YOLO architecture emerged as an efficient and robust alternative for the automated detection of cotton fruits and stood out for its capability to process images in real time with high precision. Furthermore, its implementation in crop monitoring facilitates production estimation and decision-making in precision agriculture. 
653 |a Accuracy 
653 |a Cotton 
653 |a Datasets 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Models 
653 |a Applications programs 
653 |a Fruits 
653 |a Artificial neural networks 
653 |a Crops 
653 |a Unmanned aerial vehicles 
653 |a Crop production 
653 |a Automation 
653 |a Machine learning 
653 |a Efficiency 
653 |a Agriculture 
653 |a Data augmentation 
653 |a Computer vision 
653 |a Precision agriculture 
653 |a Sensors 
653 |a Neural networks 
653 |a Data collection 
653 |a Images 
653 |a Object recognition 
653 |a Decision making 
653 |a Gossypium barbadense 
700 1 |a Arcila-Diaz, Juan 
700 1 |a Tuesta-Monteza Victor 
773 0 |t AgriEngineering  |g vol. 7, no. 5 (2025), p. 152 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211845950/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211845950/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211845950/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch