Frequency Assignment for Aviation Navigation Stations Based on an Improved Multi-Objective Genetic Local Search Algorithm

Guardat en:
Dades bibliogràfiques
Publicat a:Aerospace vol. 12, no. 5 (2025), p. 447
Autor principal: Hao Boyang
Altres autors: Xu, Yajun, Gong Ke, Gao Tianlu, Gui Yiling, Liu, Minghui, Zhang, Qiang
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3211846109
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12050447  |2 doi 
035 |a 3211846109 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Hao Boyang 
245 1 |a Frequency Assignment for Aviation Navigation Stations Based on an Improved Multi-Objective Genetic Local Search Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid development of both commercial and general aviation, the frequency assignment problem for aviation navigation stations has become increasingly important. This paper presents a general algorithm for frequency assignment at individual aviation navigation stations. Subsequently, a frequency assignment model for multiple civil aviation navigation stations is established to address large-scale frequency allocation challenges. To overcome the limitations of traditional multi-objective genetic algorithms, such as slow convergence speed and susceptibility to local optima, this study proposes several improved algorithms, including the multi-objective genetic algorithm with randomly assigned weights, the multi-objective genetic local search algorithm, and an improved multi-objective genetic local search algorithm, while optimizing key algorithm parameters. The problem involves multiple objectives, including minimizing interference in frequency assignment and reducing the total number of assigned frequencies. Experimental results demonstrate that the proposed improved multi-objective genetic algorithms—especially IMOGLSA-II—effectively address the frequency assignment problem for aviation navigation stations, achieving notable improvements in solution quality, convergence speed, and stability compared with other multi-objective genetic algorithms. In particular, although the time complexity of the proposed algorithm is slightly higher due to the incorporation of local search mechanisms, it exhibits clear advantages in reducing parameter sensitivity, simplifying algorithm structure, and enhancing engineering applicability. These characteristics make the proposed method not only well-suited to the static and constrained nature of aviation frequency assignment, but also more practical and effective than other mainstream multi-objective optimization algorithms in similar engineering scenarios. Furthermore, the proposed method offers a reliable approach that can be extended to other static frequency assignment problems and broader classes of multi-objective optimization tasks. 
610 4 |a International Telecommunication Union Federal Aviation Administration--FAA 
651 4 |a China 
653 |a Radio stations 
653 |a Assignment problem 
653 |a Parameter sensitivity 
653 |a Optimization 
653 |a Civil aviation 
653 |a Spectrum allocation 
653 |a Navigation systems 
653 |a Multiple objective analysis 
653 |a Efficiency 
653 |a Linear algebra 
653 |a Handbooks 
653 |a Aircraft 
653 |a Navigation 
653 |a General aviation 
653 |a Convergence 
653 |a Genetic algorithms 
653 |a Aviation 
653 |a Airports 
653 |a Algorithms 
653 |a Search algorithms 
653 |a Frequency assignment 
700 1 |a Xu, Yajun 
700 1 |a Gong Ke 
700 1 |a Gao Tianlu 
700 1 |a Gui Yiling 
700 1 |a Liu, Minghui 
700 1 |a Zhang, Qiang 
773 0 |t Aerospace  |g vol. 12, no. 5 (2025), p. 447 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211846109/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211846109/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211846109/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch