Research on Soil Pore Segmentation of CT Images Based on MMLFR-UNet Hybrid Network
Guardado en:
| Publicado en: | Agronomy vol. 15, no. 5 (2025), p. 1170 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Accurate segmentation of soil pore structure is crucial for studying soil water migration, nutrient cycling, and gas exchange. However, the low-contrast and high-noise CT images in complex soil environments cause the traditional segmentation methods to have obvious deficiencies in accuracy and robustness. This paper proposes a hybrid model combining a Multi-Modal Low-Frequency Reconstruction algorithm (MMLFR) and UNet (MMLFR-UNet). MMLFR enhances the key feature expression by extracting the image low-frequency signals and suppressing the noise interference through the multi-scale spectral decomposition, whereas UNet excels in the segmentation detail restoration and complexity boundary processing by virtue of its coding-decoding structure and the hopping connection mechanism. In this paper, an undisturbed soil column was collected in Hainan Province, China, which was classified as Ferralsols (FAO/UNESCO), and CT scans were utilized to acquire high-resolution images and generate high-quality datasets suitable for deep learning through preprocessing operations such as fixed-layer sampling, cropping, and enhancement. The results show that MMLFR-UNet outperforms UNet and traditional methods (e.g., Otsu and Fuzzy C-Means (FCM)) in terms of Intersection over Union (IoU), Dice Similarity Coefficients (DSC), Pixel Accuracy (PA), and boundary similarity. Notably, this model exhibits exceptional robustness and precision in segmentation tasks involving complex pore structures and low-contrast images. |
|---|---|
| ISSN: | 2073-4395 |
| DOI: | 10.3390/agronomy15051170 |
| Fuente: | Agriculture Science Database |