Generative Neural Networks for Addressing the Bioequivalence of Highly Variable Drugs

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 5 (2025), p. 266
Autor principal: Nikolopoulos Anastasios
Otros Autores: Karalis, Vangelis D
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211847019
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18050266  |2 doi 
035 |a 3211847019 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Nikolopoulos Anastasios  |u Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; anastnik@pharm.uoa.gr 
245 1 |a Generative Neural Networks for Addressing the Bioequivalence of Highly Variable Drugs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Bioequivalence assessment of highly variable drugs (HVDs) remains a significant challenge, as the application of scaled approaches requires replicate designs, complex statistical analyses, and varies between regulatory authorities (e.g., FDA and EMA). This study introduces the use of artificial intelligence, specifically Wasserstein Generative Adversarial Networks (WGANs), as a novel approach for bioequivalence studies of HVDs. Monte Carlo simulations were conducted to evaluate the performance of WGANs across various variability levels, population sizes, and data augmentation scales (2× and 3×). The generated data were tested for bioequivalence acceptance using both EMA and FDA scaled approaches. The WGAN approach, even applied without scaling, consistently outperformed the scaled EMA/FDA methods by effectively reducing the required sample size. Furthermore, the WGAN approach not only minimizes the sample size needed for bioequivalence studies of HVDs, but also eliminates the need for complex, costly, and time-consuming replicate designs that are prone to high dropout rates. This study demonstrates that using WGANs with 3× data augmentation can achieve bioequivalence acceptance rates exceeding 89% across all FDA and EMA criteria, with 10 out of 18 scenarios reaching 100%, highlighting the WGAN method potential to transform the design and efficiency of bioequivalence studies. This is a foundational step in utilizing WGANs for the bioequivalence assessment of HVDs, highlighting that with clear regulatory criteria, a new era for bioequivalence evaluation can begin. 
610 4 |a Food & Drug Administration--FDA 
653 |a Federal regulation 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Generic drugs 
653 |a Acceptance 
653 |a Generative adversarial networks 
653 |a Bioequivalence 
653 |a Drug development 
653 |a Pharmaceutical industry 
653 |a Drugs 
653 |a Automation 
653 |a Statistical analysis 
653 |a Generative artificial intelligence 
653 |a Patients 
653 |a Simulation 
653 |a Gastrointestinal surgery 
653 |a Data augmentation 
653 |a Neural networks 
653 |a Monte Carlo simulation 
653 |a Decision making 
653 |a Criteria 
653 |a Pharmacokinetics 
653 |a Design 
653 |a Artificial intelligence 
653 |a Regulatory agencies 
700 1 |a Karalis, Vangelis D  |u Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; anastnik@pharm.uoa.gr 
773 0 |t Algorithms  |g vol. 18, no. 5 (2025), p. 266 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211847019/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211847019/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211847019/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch