AI-Driven Optimization of Blockchain Scalability, Security, and Privacy Protection

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:Algorithms vol. 18, no. 5 (2025), p. 263
Príomhchruthaitheoir: Yuan Fujiang
Rannpháirtithe: Zuo Zihao, Jiang, Yang, Shu Wenzhou, Tian Zhen, Ye Chenxi, Yang, Junye, Mao Zebing, Huang, Xia, Gu Shaojie, Peng Yanhong
Foilsithe / Cruthaithe:
MDPI AG
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3211847023
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18050263  |2 doi 
035 |a 3211847023 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Yuan Fujiang  |u College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China; yuanfujiang@ctbu.edu.cn (F.Y.); 
245 1 |a AI-Driven Optimization of Blockchain Scalability, Security, and Privacy Protection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the continuous development of technology, blockchain has been widely used in various fields by virtue of its decentralization, data integrity, traceability, and anonymity. However, blockchain still faces many challenges, such as scalability and security issues. Artificial intelligence, with its powerful data processing capability, pattern recognition ability, and adaptive optimization algorithms, can improve the transaction processing efficiency of blockchain, enhance the security mechanism, and optimize the privacy protection strategy, thus effectively alleviating the limitations of blockchain in terms of scalability and security. Most of the existing related reviews explore the application of AI in blockchain as a whole but lack in-depth classification and discussion on how AI can empower the core aspects of blockchain. This paper explores the application of artificial intelligence technologies in addressing core challenges of blockchain systems, specifically in terms of scalability, security, and privacy protection. Instead of claiming a deep theoretical integration, we focus on how AI methods, such as machine learning and deep learning, have been effectively adopted to optimize blockchain consensus algorithms, improve smart contract vulnerability detection, and enhance privacy-preserving mechanisms like federated learning and differential privacy. Through comprehensive classification and discussion, this paper provides a structured overview of the current research landscape and identifies potential directions for further technical collaboration between AI and blockchain technologies. 
653 |a Innovations 
653 |a Data processing 
653 |a Collaboration 
653 |a Classification 
653 |a Security 
653 |a Artificial intelligence 
653 |a Privacy 
653 |a Blockchain 
653 |a Optimization 
653 |a Digital currencies 
653 |a Transaction processing 
653 |a Deep learning 
653 |a Machine learning 
653 |a Federated learning 
653 |a Pattern recognition 
653 |a Internet of Things 
653 |a Adaptive algorithms 
700 1 |a Zuo Zihao  |u College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China; yuanfujiang@ctbu.edu.cn (F.Y.); 
700 1 |a Jiang, Yang  |u College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China; yuanfujiang@ctbu.edu.cn (F.Y.); 
700 1 |a Shu Wenzhou  |u School of French Studies, Sichuan International Studies University, Chongqing 400031, China 
700 1 |a Tian Zhen  |u James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK 
700 1 |a Ye Chenxi  |u Faculty of Science and Technology, Hong Kong Baptist University, Hong Kong 999077, China 
700 1 |a Yang, Junye  |u College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China; yuanfujiang@ctbu.edu.cn (F.Y.); 
700 1 |a Mao Zebing  |u Department of Engineering Science and Mechanics, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan 
700 1 |a Huang, Xia  |u College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China; yuanfujiang@ctbu.edu.cn (F.Y.); 
700 1 |a Gu Shaojie  |u Magnesium Research Center, Kumamoto University, Kumamoto 860-8555, Japan 
700 1 |a Peng Yanhong  |u College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China; yuanfujiang@ctbu.edu.cn (F.Y.); 
773 0 |t Algorithms  |g vol. 18, no. 5 (2025), p. 263 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211847023/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211847023/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211847023/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch