Advanced Sales Route Optimization Through Enhanced Genetic Algorithms and Real-Time Navigation Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 5 (2025), p. 260
Autor principal: Cunuhay Cuchipe Wilmer Clemente
Otros Autores: Zajia, Johnny Bajaña, Oviedo Byron, Zambrano-Vega, Cristian
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211847024
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18050260  |2 doi 
035 |a 3211847024 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Cunuhay Cuchipe Wilmer Clemente  |u Faculty of Engineering and Applied Sciences, Technical University of Cotopaxi, La Maná Extension, La Maná 050201, Ecuador; wilmer.cunuhay@utc.edu.ec (W.C.C.C.); johnny.bajana@utc.edu.ec (J.B.Z.) 
245 1 |a Advanced Sales Route Optimization Through Enhanced Genetic Algorithms and Real-Time Navigation Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Efficient sales route optimization is a critical challenge in logistics and distribution, especially under real-world conditions involving traffic variability and dynamic constraints. This study proposes a novel Hybrid Genetic Algorithm (GAAM-TS) that integrates Adaptive Mutation, Tabu Search, and an LSTM-based travel time prediction model to enable real-time, intelligent route planning. The approach addresses the limitations of traditional genetic algorithms by enhancing solution quality, maintaining population diversity, and incorporating data-driven traffic estimations via deep learning. Experimental results on real-world data from the NYC Taxi dataset show that GAAM-TS significantly outperforms both Standard GA and GA-AM variants, achieving up to 20% improvement in travel efficiency while maintaining robustness across problem sizes. Although GAAM-TS incurs higher computational costs, it is best suited for offline or batch optimization scenarios, whereas GA-AM provides a balanced alternative for near-real-time applications. The proposed methodology is applicable to last-mile delivery, fleet routing, and sales territory management, offering a scalable and adaptive solution. Future work will explore parallelization strategies and multi-objective extensions for sustainability-aware routing. 
653 |a Navigation systems 
653 |a Deep learning 
653 |a Adaptability 
653 |a Mathematical models 
653 |a Traffic 
653 |a Mutation 
653 |a Travel time 
653 |a Environmental impact 
653 |a Energy consumption 
653 |a Sales 
653 |a Machine learning 
653 |a Dynamic programming 
653 |a Genetic algorithms 
653 |a Route optimization 
653 |a Prediction models 
653 |a Route planning 
653 |a Tabu search 
653 |a Neural networks 
653 |a Optimization 
653 |a Travel 
653 |a Linear programming 
653 |a Customers 
653 |a Real time 
653 |a Logistics 
653 |a Traveling salesman problem 
700 1 |a Zajia, Johnny Bajaña  |u Faculty of Engineering and Applied Sciences, Technical University of Cotopaxi, La Maná Extension, La Maná 050201, Ecuador; wilmer.cunuhay@utc.edu.ec (W.C.C.C.); johnny.bajana@utc.edu.ec (J.B.Z.) 
700 1 |a Oviedo Byron  |u Faculty of Graduate Programs, State Technical University of Quevedo, Quevedo 120503, Ecuador; boviedo@uteq.edu.ec 
700 1 |a Zambrano-Vega, Cristian  |u Faculty of Engineering Sciences, State Technical University of Quevedo, Quevedo 120503, Ecuador 
773 0 |t Algorithms  |g vol. 18, no. 5 (2025), p. 260 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211847024/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211847024/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211847024/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch