Neural-Network-Based Prediction of Non-Burial Overwintering Material Covering Height for Wine Grapes

Guardado en:
Detalles Bibliográficos
Publicado en:Agronomy vol. 15, no. 5 (2025), p. 1060
Autor principal: Ma, Yunlong
Otros Autores: Yang, Jinyue, Chen, Yibo, Wang, Ping, Sun Qinming
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211847027
003 UK-CbPIL
022 |a 2073-4395 
024 7 |a 10.3390/agronomy15051060  |2 doi 
035 |a 3211847027 
045 2 |b d20250101  |b d20251231 
084 |a 231332  |2 nlm 
100 1 |a Ma, Yunlong  |u Agricultural College, Shihezi University, Shihezi 832003, China; yunlong@stu.shzu.edu.cn (Y.M.); 20231012342@stu.shzu.edu.cn (Y.C.) 
245 1 |a Neural-Network-Based Prediction of Non-Burial Overwintering Material Covering Height for Wine Grapes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Grapevines in cold regions are prone to frost damage in winter. Due to its adverse effects on soil structure, plant damage, high operational costs, and limited mechanization feasibility, buried soil overwintering has been gradually replaced by no-burial overwintering techniques, which are now the primary focus for mitigating frost damage in wine grapes. While current research focuses on the selection of thermal insulation materials, less attention has been paid to the insulation mechanism of covering materials and covering methods. In this study, we investigated the insulation performance of two covering materials (tarpaulin and insulation blanket) combined with six height treatments (5–30 cm) to analyze the effect of insulation space volume on no-buried-soil overwintering. The results show that the thermal insulation performance of the insulation blanket is significantly better than that of the tarpaulin. The 5 cm height treatment under the tarpaulin cover and the 25 cm height treatment under the insulation blanket cover exhibited the best thermal insulation performance. Using a neural network machine learning approach, we constructed a model related to the height of the insulation material and facilitate the model’s accurate predictions, in which tarpaulin R2branches = 0.92, R220 cm = 0.99, and R240 cm = 0.99 and insulation blanket R2branches = 0.89, R220 cm = 0.98, and R240 cm = 0.99. The model predicted optimal insulation heights of 6 cm for the tarpaulin and 22 cm for the insulation blanket. Factors like solar radiation within the insulation space, ground radiation, airflow, and material thermal conductivity affect the optimal insulation height for different materials. This study used a neural network model to predict the optimal insulation heights for different materials, providing systematic theoretical guidance for the overwintering cultivation of wine grapes and aiding the safe development of the wine grape industry in cold regions. 
651 4 |a Tien Shan Mountains 
651 4 |a China 
653 |a Wines 
653 |a Cold 
653 |a Thermal conductivity 
653 |a Air flow 
653 |a Frost 
653 |a Buried structures 
653 |a Machine learning 
653 |a Fruits 
653 |a Thermal insulation 
653 |a Radiation 
653 |a Cold regions 
653 |a Polyethylene 
653 |a Solar radiation 
653 |a Grapes 
653 |a Soil structure 
653 |a Berries 
653 |a Overwintering 
653 |a Cultivation 
653 |a Humidity 
653 |a Cotton 
653 |a Frost damage 
653 |a Trends 
653 |a Fruit cultivation 
653 |a Mechanization 
653 |a Time series 
653 |a Heat conductivity 
653 |a Wine 
653 |a Neural networks 
653 |a Grapevines 
653 |a Temperature 
653 |a Insulation 
653 |a Tarpaulins 
653 |a Vitaceae 
700 1 |a Yang, Jinyue  |u Agricultural College, Shihezi University, Shihezi 832003, China; yunlong@stu.shzu.edu.cn (Y.M.); 20231012342@stu.shzu.edu.cn (Y.C.) 
700 1 |a Chen, Yibo  |u Agricultural College, Shihezi University, Shihezi 832003, China; yunlong@stu.shzu.edu.cn (Y.M.); 20231012342@stu.shzu.edu.cn (Y.C.) 
700 1 |a Wang, Ping  |u Food College, Shihezi University, Shihezi 832000, China 
700 1 |a Sun Qinming  |u Agricultural College, Shihezi University, Shihezi 832003, China; yunlong@stu.shzu.edu.cn (Y.M.); 20231012342@stu.shzu.edu.cn (Y.C.) 
773 0 |t Agronomy  |g vol. 15, no. 5 (2025), p. 1060 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211847027/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211847027/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211847027/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch