Quantifying Post-Purchase Service Satisfaction: A Topic–Emotion Fusion Approach with Smartphone Data

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Big Data and Cognitive Computing vol. 9, no. 5 (2025), p. 125
Kaituhi matua: Guo Peijun
Ētahi atu kaituhi: Li, Huan, Xinyue, Mo
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3211858310
003 UK-CbPIL
022 |a 2504-2289 
024 7 |a 10.3390/bdcc9050125  |2 doi 
035 |a 3211858310 
045 2 |b d20250101  |b d20251231 
100 1 |a Guo Peijun 
245 1 |a Quantifying Post-Purchase Service Satisfaction: A Topic–Emotion Fusion Approach with Smartphone Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Effectively identifying factors related to user satisfaction is crucial for evaluating customer experience. This study proposes a two-phase analytical framework that combines natural language processing techniques with hierarchical decision-making methods. In Phase 1, an ERNIE-LSTM-based emotion model (ELEM) is used to detect fake reviews from 4016 smartphone evaluations collected from JD.com (accuracy: 84.77%, recall: 84.86%, F1 score: 84.81%). The filtered genuine reviews are then analyzed using Biterm Topic Modeling (BTM) to extract key satisfaction-related topics, which are weighted based on sentiment scores and organized into a multi-criteria evaluation matrix through the Analytic Hierarchy Process (AHP). These topics are further clustered into five major factors: user-centered design (70.8%), core performance (10.0%), imaging features (8.6%), promotional incentives (7.8%), and industrial design (2.8%). This framework is applied to a comparative analysis of two smartphone stores, revealing that Huawei Mate 60 Pro emphasizes performance, while Redmi Note 11 5G focuses on imaging capabilities. Further clustering of user reviews identifies six distinct user groups, all prioritizing user-centered design and core performance, but showing differences in other preferences. In Phase 2, a comparison of word frequencies between product reviews and community Q and A content highlights hidden user concerns often missed by traditional single-source sentiment analysis, such as screen calibration and pixel density. These findings provide insights into how product design influences satisfaction and offer practical guidance for improving product development and marketing strategies. 
653 |a Customer services 
653 |a Customer satisfaction 
653 |a Analytic hierarchy process 
653 |a Deep learning 
653 |a Food 
653 |a Multiple criterion 
653 |a Data mining 
653 |a Product design 
653 |a User generated content 
653 |a Data envelopment analysis 
653 |a Emotions 
653 |a Feedback 
653 |a Product development 
653 |a Consumers 
653 |a Design engineering 
653 |a Sentiment analysis 
653 |a User satisfaction 
653 |a Clustering 
653 |a Product reviews 
653 |a User groups 
653 |a Decision making 
653 |a Quality of service 
653 |a Electronic commerce 
653 |a Natural language processing 
653 |a Design factors 
700 1 |a Li, Huan 
700 1 |a Xinyue, Mo 
773 0 |t Big Data and Cognitive Computing  |g vol. 9, no. 5 (2025), p. 125 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211858310/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211858310/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211858310/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch