Multi-Level Particle System Modeling Algorithm with WRF

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Atmosphere vol. 16, no. 5 (2025), p. 571
Κύριος συγγραφέας: Chen Julong
Άλλοι συγγραφείς: Wang, Bin, Gan Rundong, Mou Xuepeng, Yang, Shiping, Tan, Ling
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3211859450
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos16050571  |2 doi 
035 |a 3211859450 
045 2 |b d20250101  |b d20251231 
084 |a 231428  |2 nlm 
100 1 |a Chen Julong  |u Power Grid Planning & Research Center Guizhou Power Grid Co., Ltd., Guiyang 550003, China; chenjulong01@nuist.edu.cn (J.C.); wangbin01@nuist.edu.cn (B.W.); ganrundong@nuist.edu.cn (R.G.); mouxuepeng@nuist.edu.cn (X.M.); yangshiping@nuist.edu.cn (S.Y.) 
245 1 |a Multi-Level Particle System Modeling Algorithm with WRF 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In the fields of meteorological simulation and computer graphics, precise simulation of clouds has been a recent research hotspot. The existing cloud modeling methods often ignore the differentiated characteristics of cloud layers at different heights, and suffer from high computational costs under long-range conditions, making them unsuitable for large-scale scenes. Therefore, we propose a multi-level particle system 3D cloud modeling algorithm based on the Weather Research and Forecasting Model (WRF), which combines particle weight adjustment with a Proportional Integral Derivative (PID) feedback mechanism to represent cloud features of different heights and types. Based on the multi-scale mean-shift clustering algorithm, Adaptive Kernel Density Estimation (AKDE) is introduced to map density to bandwidth, achieving adaptive adjustment of clustering bandwidth while reducing computational resources and improving cloud hierarchy. Meanwhile, selecting the optimal control points based on the correlation between particle density in the edge region and cloud contour can ensure the integrity of the internal structure of the cloud and the clarity of the external contour. To improve modeling efficiency, cascade Bezier curves are designed at different line-of-sights (LoSs), utilizing the weight information of boundary particles to optimize cloud contours. Experimental results show that, compared with similar algorithms, our algorithm reduces the average running time by 37.5%, indicating enhanced computational efficiency and real-time capability, and the average number of required particles by 30.1%, reducing the cost of long-range computing. Our algorithm can fully demonstrate cloud characteristics and interlayer differences, significantly improve modeling efficiency, and can be used for accurate modeling of large-scale cloud scenes, providing strong support for meteorological and climate prediction. 
653 |a Accuracy 
653 |a Contours 
653 |a Proportional integral derivative 
653 |a Algorithms 
653 |a Modelling 
653 |a Weight 
653 |a Optimization 
653 |a Particle density (concentration) 
653 |a Computer applications 
653 |a Clustering 
653 |a Optimal control 
653 |a Realism 
653 |a Weather forecasting 
653 |a Climate change 
653 |a Efficiency 
653 |a Adaptive algorithms 
653 |a Climate prediction 
653 |a Special effects 
653 |a Simulation 
653 |a Curves 
653 |a Forecasting models 
653 |a Graphics 
653 |a Interlayers 
653 |a Costs 
653 |a Clouds 
653 |a Computational efficiency 
653 |a Computing costs 
653 |a Computer graphics 
653 |a Methods 
653 |a Information processing 
653 |a Correlation analysis 
653 |a Real time 
653 |a Physical properties 
653 |a Fluid mechanics 
653 |a Morphology 
653 |a Run time (computers) 
700 1 |a Wang, Bin  |u Power Grid Planning & Research Center Guizhou Power Grid Co., Ltd., Guiyang 550003, China; chenjulong01@nuist.edu.cn (J.C.); wangbin01@nuist.edu.cn (B.W.); ganrundong@nuist.edu.cn (R.G.); mouxuepeng@nuist.edu.cn (X.M.); yangshiping@nuist.edu.cn (S.Y.) 
700 1 |a Gan Rundong  |u Power Grid Planning & Research Center Guizhou Power Grid Co., Ltd., Guiyang 550003, China; chenjulong01@nuist.edu.cn (J.C.); wangbin01@nuist.edu.cn (B.W.); ganrundong@nuist.edu.cn (R.G.); mouxuepeng@nuist.edu.cn (X.M.); yangshiping@nuist.edu.cn (S.Y.) 
700 1 |a Mou Xuepeng  |u Power Grid Planning & Research Center Guizhou Power Grid Co., Ltd., Guiyang 550003, China; chenjulong01@nuist.edu.cn (J.C.); wangbin01@nuist.edu.cn (B.W.); ganrundong@nuist.edu.cn (R.G.); mouxuepeng@nuist.edu.cn (X.M.); yangshiping@nuist.edu.cn (S.Y.) 
700 1 |a Yang, Shiping  |u Power Grid Planning & Research Center Guizhou Power Grid Co., Ltd., Guiyang 550003, China; chenjulong01@nuist.edu.cn (J.C.); wangbin01@nuist.edu.cn (B.W.); ganrundong@nuist.edu.cn (R.G.); mouxuepeng@nuist.edu.cn (X.M.); yangshiping@nuist.edu.cn (S.Y.) 
700 1 |a Tan, Ling  |u School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China 
773 0 |t Atmosphere  |g vol. 16, no. 5 (2025), p. 571 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211859450/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211859450/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211859450/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch