Optimizing Container Placement in Data Centers by Deep Reinforcement Learning

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 10 (2025), p. 5720
Autor principal: Kim, Hyeonjeong
Otros Autores: Lee, Cheolhoon
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211859467
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15105720  |2 doi 
035 |a 3211859467 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Kim, Hyeonjeong 
245 1 |a Optimizing Container Placement in Data Centers by Deep Reinforcement Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As our society becomes increasingly digitized, the demand for computing power provided by data centers continues to grow; consequently, operating costs are increasing exponentially. Data centers supply virtualized servers to customers, primarily in the form of lightweight containers. Since the number of containers to be allocated is fixed, they should be optimally placed on physical servers to minimize the number of required servers and reduce costs. However, current data center operations do not prioritize reducing the number of physical servers through optimized container placement. Instead, containers are distributed across existing servers primarily to maintain stability. Therefore, costs associated with servers, auxiliary facilities, and electricity consumption have increased. To address this issue, we propose an optimization method that ensures economic efficiency without compromising system stability. Specifically, we utilize deep reinforcement learning (DRL), which has been widely applied in various fields, to optimize container placement. Our approach outperforms traditional heuristic algorithms and offers the additional advantage of handling fixed-size inputs, enabling flexible operation regardless of the number of containers. Using DRL in container placement has further reduced the number of servers and operating costs while enhancing overall system flexibility. 
653 |a Computer centers 
653 |a Software 
653 |a Packing problem 
653 |a Deep learning 
653 |a Costs 
653 |a Cloud computing 
653 |a Heuristic 
653 |a Servers 
653 |a Optimization algorithms 
653 |a Optimization techniques 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Algorithms 
700 1 |a Lee, Cheolhoon 
773 0 |t Applied Sciences  |g vol. 15, no. 10 (2025), p. 5720 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211859467/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211859467/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211859467/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch