A Novel Overload Control Algorithm for Distributed Control Systems to Enhance Reliability in Industrial Automation †

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 10 (2025), p. 5766
Autor principal: Jeong Taikyeong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211859575
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15105766  |2 doi 
035 |a 3211859575 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Jeong Taikyeong  |u School of Artificial Intelligence Convergence, Hallym University, Chuncheon 24252, Republic of Korea; ttjeong@hallym.ac.kr 
245 1 |a A Novel Overload Control Algorithm for Distributed Control Systems to Enhance Reliability in Industrial Automation † 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a novel real-time overload detection algorithm for distributed control systems (DCSs), particularly applied to thermoelectric power plant environments. The proposed method is integrated with a modular multi-functional processor (MFP) architecture, designed to enhance system reliability, optimize resource utilization, and improve fault resilience under dynamic operational conditions. As legacy DCS platforms, such as those installed at the Tae-An Thermoelectric Power Plant, face limitations in applying advanced logic mechanisms, a simulation-based test bench was developed to validate the algorithm in anticipation of future DCS upgrades. The algorithm operates by partitioning function code executions into segment groups, enabling fine-grained, real-time CPU and memory utilization monitoring. Simulation studies, including a modeled denitrification process, demonstrated the system’s effectiveness in maintaining load balance, reducing power consumption to 17 mW under a 2 Gbps data throughput, and mitigating overload levels by approximately 31.7%, thereby outperforming conventional control mechanisms. The segmentation strategy, combined with summation logic, further supports scalable deployment across both legacy and next-generation DCS infrastructures. By enabling proactive overload mitigation and intelligent energy utilization, the proposed solution contributes to the advancement of self-regulating power control systems. Its applicability extends to energy management, production scheduling, and digital signal processing—domains where real-time optimization and operational reliability are essential. 
653 |a Nuclear energy 
653 |a Software 
653 |a Random access memory 
653 |a Microprocessors 
653 |a Control algorithms 
653 |a Process controls 
653 |a Distributed control systems 
653 |a Design 
653 |a Systems stability 
653 |a Fault tolerance 
653 |a Coal-fired power plants 
653 |a Nuclear power plants 
653 |a Efficiency 
653 |a Preventive maintenance 
773 0 |t Applied Sciences  |g vol. 15, no. 10 (2025), p. 5766 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211859575/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211859575/fulltextwithgraphics/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211859575/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch