Analytical Approach to Enhancing Efficiency of Silt Loading Collection in EPA Vacuum Sweep Method Using K-Means Clustering

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Atmosphere vol. 16, no. 5 (2025), p. 530
Egile nagusia: Ho-jun, Yoo
Beste egile batzuk: Kim In-tai
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3211859752
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos16050530  |2 doi 
035 |a 3211859752 
045 2 |b d20250101  |b d20251231 
084 |a 231428  |2 nlm 
100 1 |a Ho-jun, Yoo  |u Research Institute, RoadKorea Inc., Gyeonggido 18471, Republic of Korea 
245 1 |a Analytical Approach to Enhancing Efficiency of Silt Loading Collection in EPA Vacuum Sweep Method Using K-Means Clustering 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study explores the application of K-means clustering to optimize the selection of sampling locations for suspended silt loading (sL) on asphalt pavements, addressing the limitations of traditional random sampling methods in the EPA method. The objective was to identify reliable sampling points for road dust concentration measurement, with a focus on improving the accuracy of data collection using the vacuum sweep method. The elbow method was used to determine the optimal number of clusters, revealing that three clusters were ideal for 25 m intervals and five for 100 m intervals. The clustering analysis identified specific sampling locations within the 25 m and 100 m road sections, such as 1.5–4.5 m and 12–18 m, and 15–18 m, 39–42 m, 57 m, 69 m, and 87 m, respectively, which adequately captured sL characteristics. The silhouette score of 0.6247 confirmed the effectiveness of the clustering method in distinguishing distinct groups with similar sL characteristics. The comparison of clustered versus non-clustered sections across 15 pavement segments showed an error rate of approximately 6%. Properly selecting sampling points ensures more accurate dust concentration data, which is crucial for effective road maintenance and environmental management. The findings highlight that optimizing the sampling process can significantly enhance the precision of dust monitoring, especially in areas with varying sL characteristics. 
610 4 |a Environmental Protection Agency--EPA 
651 4 |a South Korea 
651 4 |a United States--US 
653 |a Accuracy 
653 |a Dust 
653 |a Silt 
653 |a Data collection 
653 |a Traffic 
653 |a Environmental management 
653 |a Emissions 
653 |a Sampling methods 
653 |a Silt load 
653 |a Roads & highways 
653 |a Laboratories 
653 |a Asphalt pavements 
653 |a Asphalt 
653 |a Outdoor air quality 
653 |a Random sampling 
653 |a Elbow 
653 |a Road maintenance 
653 |a Intervals 
653 |a Cluster analysis 
653 |a Clustering 
653 |a Quality management 
653 |a Statistical sampling 
653 |a Optimization 
653 |a Effectiveness 
653 |a Atmospheric particulates 
653 |a Methods 
653 |a Vacuum 
653 |a Vector quantization 
700 1 |a Kim In-tai  |u Department of Transportation Engineering, Myongji University, Gyeonggido 17058, Republic of Korea; kit1998@mju.ac.kr 
773 0 |t Atmosphere  |g vol. 16, no. 5 (2025), p. 530 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211859752/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211859752/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211859752/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch