A Meta-Learning-Based Recognition Method for Multidimensional Feature Extraction and Fusion of Underwater Targets

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 10 (2025), p. 5744
Autor principal: Liu, Xiaochun
Otros Autores: Yang, Yunchuan, Hu Youfeng, Yang, Xiangfeng, Liu, Liwen, Shi, Lei, Liu, Jianguo
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211859808
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15105744  |2 doi 
035 |a 3211859808 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Liu, Xiaochun  |u Xi’an Precision Machinery Research Institute, Xi’an 710077, China; xiaochunliu@mail.nwpu.edu.cn (X.L.); seasonsleo@163.com (L.L.); 
245 1 |a A Meta-Learning-Based Recognition Method for Multidimensional Feature Extraction and Fusion of Underwater Targets 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To tackle the challenges of relative attitude adaptability and limited sample availability in underwater moving target recognition for active sonar, this study focuses on key aspects such as feature extraction, network model design, and information fusion. A pseudo-three-dimensional spatial feature extraction method is proposed by integrating generalized MUSIC with range–dimension information. The pseudo-WVD time–frequency feature is enhanced through the incorporation of prior knowledge. Additionally, the Doppler frequency shift distribution feature for underwater moving targets is derived and extracted. A multidimensional feature information fusion network model based on meta-learning is developed. Meta-knowledge is extracted separately from spatial, time–frequency, and Doppler feature spectra, to improve the generalization capability of single-feature task networks during small-sample training. Multidimensional feature information fusion is achieved via a feature fusion classifier. Finally, a sample library is constructed using simulation-enhanced data and experimental data for network training and testing. The results demonstrate that, in the few-sample scenario, the proposed method leverages the complementary nature of multidimensional features, effectively addressing the challenge of limited adaptability to relative horizontal orientation angles in target recognition, and achieving a recognition accuracy of up to 97.1%. 
651 4 |a United States--US 
653 |a Simulation 
653 |a Methods 
653 |a Eigenvalues 
653 |a Algorithms 
653 |a Adaptability 
653 |a Attitudes 
653 |a Target recognition 
653 |a Parameter estimation 
700 1 |a Yang, Yunchuan  |u Xi’an Precision Machinery Research Institute, Xi’an 710077, China; xiaochunliu@mail.nwpu.edu.cn (X.L.); seasonsleo@163.com (L.L.); 
700 1 |a Hu Youfeng  |u Xi’an Precision Machinery Research Institute, Xi’an 710077, China; xiaochunliu@mail.nwpu.edu.cn (X.L.); seasonsleo@163.com (L.L.); 
700 1 |a Yang, Xiangfeng  |u Xi’an Precision Machinery Research Institute, Xi’an 710077, China; xiaochunliu@mail.nwpu.edu.cn (X.L.); seasonsleo@163.com (L.L.); 
700 1 |a Liu, Liwen  |u Xi’an Precision Machinery Research Institute, Xi’an 710077, China; xiaochunliu@mail.nwpu.edu.cn (X.L.); seasonsleo@163.com (L.L.); 
700 1 |a Shi, Lei  |u Xi’an Precision Machinery Research Institute, Xi’an 710077, China; xiaochunliu@mail.nwpu.edu.cn (X.L.); seasonsleo@163.com (L.L.); 
700 1 |a Liu, Jianguo  |u School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; liujianguo@nwpu.edu.cn 
773 0 |t Applied Sciences  |g vol. 15, no. 10 (2025), p. 5744 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211859808/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211859808/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211859808/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch