Challenges in Combining EMG, Joint Moments, and GRF from Marker-Less Video-Based Motion Capture Systems

Shranjeno v:
Bibliografske podrobnosti
izdano v:Bioengineering vol. 12, no. 5 (2025), p. 461
Glavni avtor: Rehan, Afzal H M
Drugi avtorji: Louhichi Borhen, Alrasheedi, Nashmi H
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3211860051
003 UK-CbPIL
022 |a 2306-5354 
024 7 |a 10.3390/bioengineering12050461  |2 doi 
035 |a 3211860051 
045 2 |b d20250101  |b d20251231 
100 1 |a Rehan, Afzal H M  |u Key Laboratory for Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China 
245 1 |a Challenges in Combining EMG, Joint Moments, and GRF from Marker-Less Video-Based Motion Capture Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The evolution of motion capture technology from marker-based to marker-less systems is a promising field, emphasizing the critical role of combining electromyography (EMG), joint moments, and ground reaction forces (GRF) in advancing biomechanical analysis. This review examines the integration of EMG, joint moments, and GRF in marker-less video-based motion capture systems, focusing on current approaches, challenges, and future research directions. This paper recognizes the significant challenges of integrating the aforementioned modalities, which include problems of acquiring and synchronizing data and the issue of validating results. Particular challenges in accuracy, reliability, calibration, and environmental influences are also pointed out, together with the issue of the standard protocols of multimodal data fusion. Using a comparative analysis of significant case studies, the review examines existing methodologies’ successes and weaknesses and established best practices. New emerging themes of machine learning techniques, real-time analysis, and advancements in sensing technologies are also addressed to improve data fusion. By highlighting both the limitations and potential advancements, this review provides essential insights and recommendations for future research to optimize marker-less motion capture systems for comprehensive biomechanical assessments. 
653 |a Human mechanics 
653 |a Electromyography 
653 |a Machine learning 
653 |a Motion capture 
653 |a Accuracy 
653 |a Biomechanics 
653 |a Comparative analysis 
653 |a Biomechanical engineering 
653 |a Data acquisition 
653 |a Computer vision 
653 |a Ergonomics 
653 |a Signal processing 
653 |a Synchronism 
653 |a Best practice 
653 |a Data integration 
653 |a Sport science 
653 |a Algorithms 
653 |a Real time 
700 1 |a Louhichi Borhen  |u Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia 
700 1 |a Alrasheedi, Nashmi H  |u Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia 
773 0 |t Bioengineering  |g vol. 12, no. 5 (2025), p. 461 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211860051/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211860051/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211860051/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch