Exploring Bio-Impedance Sensing for Intelligent Wearable Devices

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Bioengineering vol. 12, no. 5 (2025), p. 521
Kaituhi matua: Arabsalmani Nafise
Ētahi atu kaituhi: Ghouchani Arman, Shahin, Jafarabadi Ashtiani, Zamani Milad
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3211860280
003 UK-CbPIL
022 |a 2306-5354 
024 7 |a 10.3390/bioengineering12050521  |2 doi 
035 |a 3211860280 
045 2 |b d20250101  |b d20251231 
100 1 |a Arabsalmani Nafise  |u School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran; n.a.salmani@ut.ac.ir (N.A.); sashtiani@ut.ac.ir (S.J.A.) 
245 1 |a Exploring Bio-Impedance Sensing for Intelligent Wearable Devices 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The rapid growth of wearable technology has opened new possibilities for smart health-monitoring systems. Among various sensing methods, bio-impedance sensing has stood out as a powerful, non-invasive, and energy-efficient way to track physiological changes and gather important health information. This review looks at the basic principles behind bio-impedance sensing, how it is being built into wearable devices, and its use in healthcare and everyday wellness tracking. We examine recent progress in sensor design, signal processing, and machine learning, and show how these developments are making real-time health monitoring more effective. While bio-impedance systems offer many advantages, they also face challenges, particularly when it comes to making devices smaller, reducing power use, and improving the accuracy of collected data. One key issue is that analyzing bio-impedance signals often relies on complex digital signal processing, which can be both computationally heavy and energy-hungry. To address this, researchers are exploring the use of neuromorphic processors—hardware inspired by the way the human brain works. These processors use spiking neural networks (SNNs) and event-driven designs to process signals more efficiently, allowing bio-impedance sensors to pick up subtle physiological changes while using far less power. This not only extends battery life but also brings us closer to practical, long-lasting health-monitoring solutions. In this paper, we aim to connect recent engineering advances with real-world applications, highlighting how bio-impedance sensing could shape the next generation of intelligent wearable devices. 
653 |a Physiology 
653 |a Tomography 
653 |a Flow velocity 
653 |a Epilepsy 
653 |a Brain research 
653 |a Heart failure 
653 |a Chronic illnesses 
653 |a Wearable technology 
653 |a Measurement techniques 
653 |a Neurosciences 
653 |a Machine learning 
653 |a Hydration 
653 |a Breast cancer 
653 |a Marking and tracking techniques 
653 |a Signal processing 
653 |a Impedance 
653 |a Neural networks 
653 |a Spectrum analysis 
653 |a Digital signal processing 
653 |a Blood pressure 
653 |a Edema 
653 |a Firing pattern 
653 |a Power management 
653 |a Wearable computers 
653 |a Hemodynamics 
653 |a Biomarkers 
653 |a Devices 
653 |a Body composition 
653 |a Processors 
653 |a Tissues 
653 |a Brain diseases 
653 |a Real time 
653 |a Ischemia 
653 |a Ultrasonic imaging 
653 |a Traumatic brain injury 
653 |a Heart rate 
700 1 |a Ghouchani Arman  |u Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark; aghouchani@ece.au.dk 
700 1 |a Shahin, Jafarabadi Ashtiani  |u School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran; n.a.salmani@ut.ac.ir (N.A.); sashtiani@ut.ac.ir (S.J.A.) 
700 1 |a Zamani Milad  |u Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark; aghouchani@ece.au.dk 
773 0 |t Bioengineering  |g vol. 12, no. 5 (2025), p. 521 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211860280/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211860280/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211860280/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch